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Riassunto: Una delle principali sfide con cui si confrontano i decisori pubblici con 

riferimento al servizio scolastico è quella di ridurre i divari fra studenti all’interno di 

una stessa scuola, ma ancor di più fra tutti gli studenti su base nazionale. I dati 

dell’INVALSI (Istituto Nazionale per la Valutazione del Sistema Educativo di 

Istruzione e Formazione) costituiscono la fonte informativa primaria per valutare tali 

divari. In questo lavoro, ci avvaliamo dei dati dell’indagine campionaria su scala 

regionale che vengono distribuiti liberamente dall’INVALSI. Il nostro obiettivo è 

quello di pervenire a stime più attendibili rispetto a quelle fornite dall’Istituto stesso. 

Per fare ciò, sfruttiamo i modelli small area di tipo area-level, ossia modelli lineari 

ad effetti misti, costruti su due livelli, in cui il dato INVALSI, che costituisce lo 

stimatore diretto, viene combinato con uno stimatore sintetico proveniente da 

modello, in modo da dare più vigore allo stimatore diretto per mezzo di variabili 

ausiliarie disponibili a livello d’area. Il nostro obiettivo è anche quello di identificare 

gli ostacoli che possano pregiudicare l’apprendimento da parte degli studenti. 

Inoltre, esploriamo l’inclusione di una componente che tiene conto della 

correlazione spaziale nei modelli di riferimento. I risultati della nostra analisi 

mostrano come le condizioni socioeconomiche e le dotazioni infrastrutturali abbiano 

un impatto significativo sui risultati conseguiti dagli studenti. Inoltre, mostriamo 

come l’applicazione dei modelli per piccole aree consenta di ridurre in maniera 

importante gli errori quadratici medi delle stime ottenute dall’INVALSI. 
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1. Introduzione 

La stima per piccole aree (Small area estimation, SAE) facilita la produzione di in-

dicatori disaggregati su scale territoriali in cui la dimensione del campione di riferi-

mento non è tale da offrire stime affidabili. La stima per piccole aree si avvale di due 

classi di modelli: modelli unit-level, e modelli area-level. I primi sottintendono la 

disponibilità di dati individuali o microdati, mentre i secondi richiedono dati aggre-

gati su un certo dominio territoriale. Esiste una pletora di letteratura scientifica sui 

modelli di stima per piccole aree. Sebbene numerose estensioni ai modelli preesi-

stenti siano state proposte nel corso degli anni, l’attività di ricerca è a tutt’oggi in-

tensa, soprattutto per quanto concerne il problema della model selection.   

Le agenzie governative, usualmente, stimano delle quantità d’interesse su scala 

nazionale, quali possono essere, ad esempio, il tasso di disoccupazione, il reddito, 

l’indice di povertà, ecc. Ad ogni modo, la stima su scala nazionale non è indicativa 

delle differenze fra aree geografiche o sottopopolazioni, pertanto stime su scala ri-

dotta sono necessarie affinché si possa intervenire nei territori che evidenziano si-

tuazioni di svantaggio. Le quantità che vengono prodotte mediante stimatori diretti 

design-based sono, di solito, meno affidabili, proprio alla luce della dimensione ri-

dotta dell’area di riferimento. Tuttavia, esistono altri motivi che possono ostacolare 

la raccolta di un campione adeguato, che prescindono dalla dimensione del dominio 

geografico o demografico di riferimento, come, ad esempio, la reticenza ad esternare 

informazioni personali, soprattutto di matrice economica, ed in particolare in speci-

fiche sottopopolazioni. SAE si avvale di un approccio di tipo model-based per pro-

durre stimatori indiretti che vanno ad integrare l’informazione proveniente dallo sti-

matore diretto, in modo da supplire alla poca accuratezza che può caratterizzare 

quest’ultimo. Gli stimatori di small area nei modelli lineari sono, pertanto, tipica-

mente espressi come combinazione lineare convessa di stimatori diretti e stimatori 

sintetici desunti da un certo modello. 

Il modello di Fay & Herriot (1979) è il modello più popolare per dati disponibili 

a livello di area. Nella fattispecie, esso sfrutta lo stimatore diretto, assumendo una 

struttura gerarchica per quest’ultimo, e utilizza l’informazione di variabili ausiliarie 

che può provenire da dati di registro o censuari. Numerose estensioni del modello di 

Fay & Herriot sono state proposte, per tenere conto di particolari specifiche dei dati. 

Ad esempio, alcune covariate potrebbero essere affette da errore di misurazione. 

Ybarra & Lohr (2008) hanno proposto una modifica del modello di Fay & Herriot in 

cui alcune covariate sono misurate con errore, usando un approccio frequentista. 

Arima et al. (2015) hanno rivisto in chiave Bayesiana gli stimatori di small area 



 

proposti da Ybarra & Lohr. Datta et al. (2011) hanno dimostrato che l’errore di mi-

surazione può essere ridondante se considerato insieme ad effetti casuali riferiti alle 

singole aree; pertanto, si pone un problema di selezione (delle componenti rilevanti) 

del modello; si veda anche Datta & Mandal (2015). In molte situazioni, ad esempio, 

si ha a che fare con dati che deviano dalla normalità. Solitamente, per il reddito e per 

alcuni dati aziendali si osserva un’asimmetria positiva; ne consegue che la relazione 

lineare tra la variabile risposta e le covariate e le assunzioni di normalità dell’effetto 

casuale e dell’errore di campionamento, insite nel modello standard di Fay & Her-

riot, potrebbero essere violate. A tal proposito, sono state proposte soluzioni per ov-

viare a questo problema, che risiedono nell’applicazione di opportune trasformazioni 

degli stimatori di small area (Neves et al., 2013; Schmid et al., 2017). Il modello di 

Fay & Herriot standard assume indipendenza fra gli effetti casuali delle aree; d’altro 

canto, introdurre la correlazione spaziale fra aree geografiche può comportare un 

valore aggiunto in termini di stime (Petrucci e Salvati, 2006). Per una panoramica 

generale sui modelli di small area si veda Rao (2003). 

Il presente lavoro ha ad oggetto la valutazione della qualità del sistema educativo 

e le determinanti di quest’ultima a livello regionale, in modo da rilevare eventuali 

gap fra regioni, e dunque permettere agli agenti politici di intervenire con azioni 

mirate nei territori che presentano criticità, al fine di uniformare il bagaglio culturale 

sull’intero piano nazionale. A tal proposito, ci avvaliamo dei risultati delle indagini 

INVALSI, che permettono di misurare il raggiungimento di alcune competenze di 

base nella popolazione studentesca. INVALSI produce stime su diversi gradi scolari, 

ovverosia sulle classi II e V della scuola primaria, sulla classe III della scuola secon-

daria di primo grado, e sulle classi II e V della scuola secondaria di secondo grado, 

rispettivamente corrispondenti ai gradi scolari 2°, 5°, 8°, 10°, 13°. Tale rilevazione 

viene fatta in diversi ambiti disciplinari, ossia matematica, italiano, e inglese. Nella 

fattispecie, ci avvaliamo dei soli risultati dei test di matematica, per due diversi gradi 

di istruzione, ovvero il grado 2°, rappresentato dalla classe seconda della scuola pri-

maria, e il grado 10°, rappresentato dalla classe seconda della scuola secondaria su-

periore. INVALSI produce due diverse indagini. Dapprima, un’Indagine Standard 

(IS), effettuata sulla quasi totalità delle classi, nei diversi anni scolari. In questo caso 

le prove vengono somministrate dal corpo docente della scuola. In secondo luogo, 

viene fatta un’Indagine Campionaria di Controllo (ICC). In tal caso, viene estratto 

un campione casuale con metodo a due stadi: nel primo stadio sono campionate le 

scuole, e nel secondo, di norma, due classi per ogni scuola selezionata allo stadio 

precedente. Nelle classi così selezionate lo svolgimento delle prove, che rimangono 

le stesse, avviene alla presenza di un osservatore esterno che garantisce il pieno 



 

rispetto del protocollo di somministrazione. Lo scopo dell’ICC è quello di fare una 

correzione per il cheating, ossia il fenomeno per cui il corpo docente della scuola 

sarebbe più portato ad aiutare gli allievi nella risoluzione delle prove rispetto a 

quanto non facciano i valutatori esterni. Nonostante, l’ICC sia soggetta all’errore del 

disegno campionario, questa risulta meno affetta dall’errore di misurazione che de-

riva dal cheating stesso, che dunque porta a sovrastimare i rendimenti degli allievi.  

2. Materiali e metodi 

I dati utilizzati provengono dall’Indagine Campionaria di Controllo effettuata a 

livello regionale. Nel caso specifico, ci riferiamo ai dati dell’anno accademico 2021-

2022, riferiti alla sola prova di matematica, e ai soli gradi scolari 2° e 10°. Nell’ap-

plicazione dei modelli area-level, la variabile risposta è costituita dal punteggio me-

dio regionale del test di matematica. Essendo quest’ultimo una stima effettuata su un 

campione di scuole, esso va a costituire, di fatto, lo stimatore diretto (Horvitz e 

Thompson, 1952). Ad esso è associato un errore di campionamento, la cui cono-

scenza è importante ai fini dei modelli per piccole aree, per non incorrere in problemi 

di identificabilità. Fig. 1 mostra la distribuzione territoriale dello stimatore diretto 

per il grado scolare 2°.  

Figura 1. Distribuzione territoriale dello stimatore diretto del punteggio medio regionale 

del test di matematica per il grado scolare 2°. 

 



 

 

L’analisi di Fig. 1 non suggerisce grandi differenze territoriali rispetto ai risultati 

conseguiti dagli scolari della classe seconda della scuola primaria. Del resto, si 

evince una situazione di svantaggio nell’Italia insulare e nel Piemonte. Gli score più 

alti si registrano, invece, nell’Italia centro-meridionale, con valore massimo regi-

strato nel Molise. Fig. 2 mostra lo stesso stimatore per il grado scolare 10°.  

Figura 2. Distribuzione territoriale dello stimatore diretto del punteggio medio regionale 

del test di matematica per il grado scolare 10°. 

 
 

Dall’analisi di Fig. 2 emerge chiaramente una polarizzazione dei risultati più alti 

nell’Italia centro-settentrionale. Questo dato necessita di un maggiore approfondi-

mento di quelle che possano essere le cause di tale sconnessura tra nord e sud.  

Lo score nei test di matematica per ogni grado di istruzione di interesse viene 

analizzato in risposta ad alcune covariate, specifiche per la scuola primaria e secon-

daria, che vengono selezionate ad hoc per i singoli gradi scolari. La scelta delle va-

riabili ausiliarie viene fatta sulla base di un’accurata analisi esplorativa, al fine di far 

emergere le relazioni più forti. In particolare, per la classe seconda della scuola pri-

maria (grado scolare 2°), vengono selezionate le seguenti variabili: numero di iscritti 

per classe, numero di insegnanti per scuola, stranieri per ogni cento iscritti. Le prime 

due possono essere viste come variabili di tipo infrastrutturale, mentre l’ultima ha 

una connotazione di natura sociologica. Tutte le variabili esplicative si riferiscono 

all’anno solare 2021. Per quanto concerne, invece, la classe seconda della scuola 



 

secondaria superiore (grado scolare 10°), le variabili di interesse sono: numero di 

stranieri per ogni cento iscritti, femmine per ogni cento iscritti, numero di ripetenti 

per classe. Stavolta, tutte le variabili possono considerarsi collegate a fenomeni so-

ciali, e sono sempre riferite all’anno solare 2021. Si noti che nell’applicazione dei 

modelli di riferimento, per entrambi i gradi scolari, tutte le variabili sono state stan-

dardizzate. Altresì, tutte le suddette variabili provengono da rilevazioni fatte 

dall’Istituto Nazionale di Statistica (ISTAT), e pertanto è stato necessario allineare 

fonti di dati diverse. Tuttavia, qualche dato mancante è stato reperito tramite oppor-

tune documentazioni. In generale, ci riferiamo alla provincia autonoma di Trento in 

luogo del Trentino Alto-Adige, dal momento che INVALSI non rilascia stime rela-

tive all’intera regione.  

Per mettere in relazione gli stimatori diretti, a livello di regione, con le variabili 

ausiliarie ci avvaliamo del modello di Fay & Herriot (1979). Esso consta di due li-

velli: un sampling model, ed un linking model, ovvero un modello lineare che mette 

in relazione le medie d’area con alcune covariate. In particolare, il primo livello può 

essere espresso come 

 

𝜃𝑖
𝐷 = 𝜃𝑖 + 𝑒𝑖,    𝑖 = 1, … , 𝑚 

 

dove 𝜃𝑖
𝐷 è lo stimatore diretto non distorto delle medie areali di popolazione 𝜃𝑖. Il 

termine 𝑒𝑖 rappresenta gli errori di campionamento, che sono considerati indipen-

denti e con distribuzione assunta normale, 𝑒𝑖~𝑁(0, 𝜑𝑖), mentre 𝑚 è il numero di 

small areas, che nel nostro caso sono le regioni italiane, 𝑚 = 20. Il parametro 𝜑𝑖 è 

solitamente noto, o al più viene stimato esternamente al modello, pertanto, nei mo-

delli Bayesiani, esso non viene trattato come variabile aleatoria. Il secondo livello 

viene espresso come 

 

𝜃𝑖 = 𝑥𝑖
𝑇𝛽 + 𝑣𝑖 

 

dove 𝑥𝑖 è un set di covariate specifiche d’area, 𝛽 è un vettore di coefficienti, e 𝑣𝑖 

rappresenta gli effetti casuali, che, nel modello standard di Fay & Herriot, sono in-

dipendenti e identicamente distribuiti con distribuzione normale, 𝑣𝑖~𝑁(0, 𝜎𝑣
2). 

Combinando i due livelli si ottiene uno speciale modello lineare ad effetti misti, in 

cui la struttura di covarianza è di tipo diagonale, 

 

𝜃𝑖
𝐷 = 𝑥𝑖

𝑇𝛽 + 𝑣𝑖 + 𝑒𝑖. 

 



 

Lo stimatore di Fay-Herriot, anche detto empirical best linear unbiased predictor 

(EBLUP) di 𝜃𝑖, è ottenuto sostituendo alla varianza dell’effetto casuale, 𝜎𝑣
2, e ai 

coefficienti di regressione, 𝛽, delle quantità stimate, rispettivamente 𝜎̂𝑣
2 e 𝛽̂. Occorre, 

altresì, evidenziare che, nel paradigma Bayesiano, questi parametri vengono consi-

derati aleatori, a meno che non siano noti. Ne segue che lo stimatore può essere 

scritto come 

 

𝜃𝑖
𝐹𝐻 = 𝛾𝑖𝜃𝑖

𝐷 + (1 − 𝛾𝑖)𝑥𝑖
𝑇𝛽̂ 

 

ove 𝛾𝑖 =
𝜎̂𝑣

2

𝜎̂𝑣
2+𝜑𝑖

 viene detto fattore di shrinkage. Lo stimatore di Fay-Herriot è per-

tanto una media ponderata dello stimatore diretto e dello stimatore sintetico che de-

riva dalla regressione lineare. Quanto più la varianza del disegno campionario è pic-

cola, e quanto più la varianza dell’effetto casuale è grande, tanto più si tende a pri-

vilegiare lo stimatore diretto; viceversa, nel caso opposto. 

L’analisi dei dati si avvale del pacchetto emdi del software R, che incorpora sia 

modelli unit-level sia modelli area-level con relative estensioni. Tra quest’ultime, al 

fine di cogliere anche gli aspetti di carattere territoriale, abbiamo stimato i divari di 

apprendimento fra regioni utilizzando il modello di Fay-Herriot con connotazione 

spaziale. Quest’ultimo prende ad input la matrice di prossimità fra le regioni. 

3. Risultati 

Il modello standard di Fay-Herriot migliora nettamente le stime rispetto allo stima-

tore diretto in termini di errore quadratico medio, e questo avviene sia per quanto 

concerne il grado scolare 2° sia per il grado scolare 10°, evidenziando un concreto 

potere esplicativo delle variabili ausiliarie. Tuttavia, un ulteriore beneficio in termini 

di stime lo si ha considerando l’estensione spaziale del modello di Fay-Herriot 

stesso. Anche in questo caso osserviamo una significativa riduzione degli errori qua-

dratici medi per entrambi i gradi scolari, sebbene questa sia più marcata per il grado 

scolare 10°. Una possibile spiegazione di questo comportamento potrebbe risiedere 

nel fatto che le variabili ausiliarie utilizzate per il grado scolare 2° riescano di per sé 

a catturare bene la correlazione spaziale esistente fra i risultati regionali. Invece, le 

variabili utilizzate per il grado 10°, seppure abbiano un elevato potere predittivo, 

sembrano spiegare meno la correlazione spaziale esistente. In aggiunta, i test di Mo-

ran e di Geary, che sono implementati nel pacchetto emdi, rivelano una non signifi-

cativa correlazione spaziale per il grado 2°, mentre questa è fortemente significativa 



 

per il grado scolare 10°, come si evince anche da Fig. 2. Di seguito, riportiamo alcune 

misure sintetiche per entrambi i gradi scolari.   

3.1 Grado scolare 2° 

In questa sezione mostriamo i risultati dell’analisi, relativamente ai test di matema-

tica per la classe seconda della scuola primaria. Nella fattispecie, mostriamo i risul-

tati delle stime del modello lineare ad effetti misti, sia nella sua versione standard, 

sia nella sua estensione spaziale. In particolare, mettiamo in luce come l’adozione 

dei modelli area-level migliori le stime in termini di errore quadratico medio sia 

quando consideriamo il modello standard sia quando introduciamo una componente 

spaziale. Si tenga presente che il beneficio in termini di stime è sempre attribuibile 

alle variabili antecedenti, e dunque, a differenza di quanto vedremo per il grado sco-

lare 10°, per il grado scolare 2° non riusciamo a dimezzare gli errori quadratici medi 

degli stimatori diretti. Ciò deriva anche dal fatto che, per il grado scolare 2°, gli 

stimatori diretti, di partenza, hanno errori quadratici medi più contenuti. Tab. 1 ri-

porta l’output del modello standard di Fay-Herriot per il grado scolare 2°.  

Tabella 1. Stime da modello standard di Fay-Herriot degli effetti lineari delle variabili au-

siliarie sui punteggi dei test di matematica per il grado scolare 2°. 

Variabili ausiliarie Coefficienti P-value 

Intercetta 

# stranieri per 100 iscritti 

# iscritti per classe 

# insegnanti per scuola 

192,805 

4,372 

-9,662 

6,610 

< 0,001 

0,012 

< 0,001 

0,003 

 

Da Tab. 1 si evince come il numero di studenti stranieri, e il numero di insegnanti 

per scuola vadano ad influire positivamente sul risultato medio regionale delle prove 

INVALSI. Viceversa, si nota come classi più affollate abbiano un effetto negativo 

sugli score regionali. Anche se apparentemente potrebbe sembrare controintuitivo, 

il numero di studenti stranieri è correlato positivamente col risultato medio regionale. 

Il motivo di tale fenomeno è sussunto in Fig. 3. Difatti, il numero di studenti stranieri 

può essere considerato come una proxy della ricchezza delle regioni, dacché essi 

tendono a concentrarsi nelle regioni, per l’appunto, più ricche. Fig. 3 mostra come 

la grande maggioranza di bambini stranieri sia concentrata nelle regioni dell’Italia 

centro-settentrionale. Viceversa, al sud la loro presenza è senza dubbio scarsa, con 

una piccola rappresentanza nelle regioni di primo approdo, quali la Calabria e la 

Sicilia. Pertanto, possiamo concludere che la positività del coefficiente della 



 

variabile studenti stranieri per 100 iscritti debba essere attribuita ad un fenomeno di 

tipo economico che mette in relazione la ricchezza regionale con la presenza di stra-

nieri.  

Figura 3. Distribuzione regionale del numero di studenti stranieri ogni 100 iscritti per il 

grado scolare 2°. 

 
 

Per verificare l’impatto dell’inserimento della componente spaziale sulle stime 

dei coefficienti, ci avvaliamo, in prima battuta, dei test di Moran e di Geary. L’indice 

I di Moran ha un campo di variazione compreso tra -1 e 1, ove valori uguali a -1 e 1 

sanciscono perfetta autocorrelazione spaziale negativa e positiva, rispettivamente. 

L’indice C di Geary varia, invece, tra 0 e un valore positivo maggiore di 1, ove 1 

rappresenta assenza di autocorrelazione spaziale, valori via via inferiori a 1 indicano 

una crescente autocorrelazione spaziale positiva, viceversa valori via via maggiori 

di 1 denotano una crescente autocorrelazione spaziale negativa. Nel caso in que-

stione la statistica I di Moran risulta uguale a 0,064, con un p-value associato pari a 

0,241, mentre la statistica C di Geary ha un valore uguale a 0,716, con un p-value 

pari a 0,045. Entrambi i test rivelano una correlazione spaziale non significativa. 

Tab. 2 riporta le stime derivanti dal modello di Fay-Herriot con componente spaziale. 

Tabella 2. Stime da modello spaziale di Fay-Herriot degli effetti lineari delle variabili au-

siliarie sui punteggi dei test di matematica per il grado scolare 2°. 

Variabili ausiliarie Coefficienti P-value 

Intercetta 

# stranieri per 100 iscritti 

# iscritti per classe 

# insegnanti per scuola 

190,190 

4,589 

-8,349 

4,337 

< 0,001 

0,028 

< 0,001 

0,031 



 

 

Dai risultati contenuti in Tab. 2 si nota come l’inclusione nel modello della cor-

relazione spaziale non modifichi più di tanto l’entità e la natura dei coefficienti, seb-

bene ne risenta leggermente la significatività di qualcuno di essi. Le variazioni degli 

errori standard, che per brevità non mostriamo, unitamente a quelle dei coefficienti 

di regressione, danno luogo, in alcuni casi, a valori della statistica test meno estremi, 

e dunque a coefficienti meno significativi.  

Il modello spaziale ha un impatto anche sugli errori quadratici medi dei singoli 

domini, come suggerisce Tab. 3.  

Tabella 3. Errori quadratici medi per lo stimatore diretto, lo stimatore di Fay-Herriot, e lo 

stimatore di Fay-Herriot nel modello spaziale, per il grado scolare 2°. 

Domini MSE Diretto MSE FH MSE FH spaziale 

Abruzzo 

Basilicata 

Calabria 

Campania 

Emilia-Romagna 

Friuli-Ven. Giulia 

Lazio 

Liguria 

Lombardia 

Marche 

Molise 

Piemonte 

Prov. Aut. Trento 

Puglia 

Sardegna 

Sicilia 

Toscana 

Umbria 

Valle d’Aosta 

Veneto 

3,120 

4,118 

4,018 

4,214 

2,238 

2,709 

2,729 

2,861 

2,354 

2,878 

3,092 

3,129 

2,865 

2,328 

2,949 

2,841 

3,249 

2,963 

2,817 

2,733 

2,824 

3,630 

3,589 

3,755 

2,131 

2,501 

2,700 

2,631 

2,233 

2,650 

2,919 

2,835 

2,658 

2,272 

2,731 

2,677 

3,006 

2,698 

2,660 

2,551 

2,766 

3,230 

3,441 

3,584 

2,038 

2,481 

2,694 

2,556 

2,156 

2,532 

2,857 

2,618 

2,618 

2,228 

2,770 

2,680 

2,876 

2,669 

2,617 

2,429 

 

Per brevità, riportiamo solo gli errori quadratici medi (Tab. 3), e non le stime 

delle medie d’area, che di fatto tendono a fare shrinkage attorno allo stimatore di-

retto. Tab. 3 pone in evidenza come le variabili antecedenti utilizzate per predire lo 



 

score regionale per il grado scolare 2° riescano a corroborare lo stimatore diretto. 

Difatti, lo stimatore di Fay-Herriot ha un errore quadratico medio inferiore a quello 

dei dati osservati per tutti i domini territoriali. Altresì, un ulteriore miglioramento 

deriva dall’inserimento dell’autocorrelazione spaziale. L’inserimento nel modello 

dell’effetto spaziale mediante la considerazione della matrice di prossimità comporta 

una diminuzione del MSE per tutte le regioni, eccezion fatta per le due isole, che di 

fatto non traggono beneficio dall’adiacenza di alcun’altra regione. 

3.2 Grado scolare 10° 

Come abbiamo già visto in precedenza per la classe seconda della scuola primaria, 

ora riportiamo alcuni risultati relativi ai test di matematica per la classe seconda della 

scuola secondaria superiore. Si voglia sottolineare che la peculiare spaccatura 

dell’Italia evintasi da Fig. 2 richiede una trattazione specifica. Pertanto, abbiamo 

considerato variabili ausiliarie differenti, al fine di far emergere le relazioni più im-

portanti. In questo caso, le variabili considerate hanno un notevole potere predittivo, 

e si riferiscono maggiormente e fattori socioeconomici, piuttosto che a questioni di 

natura infrastrutturale. Come abbiamo già sottolineato, la scelta di buone covariate 

ha un impatto considerevole sulla precisione degli stimatori di Fay-Herriot. In Tab. 

4 sono riassunti i risultati derivanti dall’applicazione del modello standard di Fay-

Herriot per il grado scolare 10°.  

Tabella 4. Stime da modello standard di Fay-Herriot degli effetti lineari delle variabili au-

siliarie sui punteggi dei test di matematica per il grado scolare 10°. 

Variabili ausiliarie Coefficienti P-value 

Intercetta 

# stranieri per 100 iscritti 

# femmine per 100 iscritti 

# ripetenti per classe 

196,276 

4,681 

4,616 

-3,910 

<0,001 

< 0,001 

< 0,001 

< 0,001 

 

Tab. 4 rivela come il numero di studenti stranieri, e la quantità relativa di studen-

tesse siano variabili positivamente correlate col risultato al test di matematica. In 

maniera non sorprendente, invece, si ha che classi con più ripetenti arrecano un ef-

fetto negativo ai risultati regionali. Tutte le variabili ausiliarie e l’intercetta mostrano 

coefficienti di regressione significativi ad un livello di significatività prossimo allo 

zero. Di nuovo, Fig. 4 riassume come il numero di studenti stranieri sia indicativo 

della ricchezza della regione; ciò spiega anche il motivo per cui la variabile numero 

di studenti stranieri per 100 iscritti presenti un coefficiente di regressione positivo, 

sebbene questo potrebbe sembrare, inizialmente, controintuitivo. 



 

Figura 4. Distribuzione regionale del numero di studenti stranieri ogni 100 iscritti per il 

grado scolare 10°. 

 
 

Ancora, volendo verificare la presenza di correlazione spaziale, ci avvaliamo dei 

suddetti test d’ipotesi. In questo caso, la statistica I di Moran presenta un valore 

uguale a 0,647, con un p-value associato di gran lunga inferiore a 0,001, mentre, la 

statistica C di Geary risulta pari a 0,095, con un p-value anch’esso molto vicino allo 

zero. Da entrambi i test si evince una correlazione spaziale positiva e fortemente 

significativa. Tuttavia, la linea di demarcazione che divide il nord dal sud (Fig. 2) fa 

sì che questa correlazione spaziale non riesca bene ad esplicarsi a livello regionale; 

e forse sarebbe meglio colta ad un livello di disaggregazione territoriale maggiore. 

Tab. 5 riporta le stime derivanti dal modello di Fay-Herriot con componente spaziale.  

Tabella 5. Stime da modello spaziale di Fay-Herriot degli effetti lineari delle variabili au-

siliarie sui punteggi dei test di matematica per il grado scolare 10°. 

Variabili ausiliarie Coefficienti P-value 

Intercetta 

# stranieri per 100 iscritti 

# femmine per 100 iscritti 

# ripetenti per classe 

193,145 

4,085 

3,583 

-3,098 

<0,001 

< 0,001 

< 0,001 

< 0,001 

 

In Tab. 5 non si notano grosse differenze rispetto a Tab. 4 in termini di magnitudo 

dei coefficienti. Vale la pena rilevare, però, che, sebbene non mostrati, gli errori 

standard delle stime dei coefficienti sono sempre superiori a quelli derivanti dal mo-

dello standard di Fay-Herriot. Tuttavia, tutti i coefficienti rimangono significativi ad 

un livello di significatività 𝛼 dell’1 per mille. L’analisi congiunta di Fig. 2 e dei ri-

sultati dei test di Moran e Geary suggerisce come l’aggiunta nel modello 



 

dell’autocorrelazione spaziale riduca sensibilmente gli errori quadratici medi, salvo 

in alcune regioni di frontiera, quali la Valle d’Aosta e il Friuli-Venezia Giulia, e, 

ancora, le due isole, che non beneficiano della prossimità di altre regioni. Gli errori 

quadratici medi risultanti dall’applicazione delle versioni standard e spaziale del mo-

dello di Fay-Herriot, nonché quelli dello stimatore diretto, sono riassunti in Tab. 6. 

D’altronde, occorre sottolineare come, di partenza, l’errore del disegno campionario 

condotto da INVALSI, per il grado scolare 10°, risulti ben più elevato rispetto a 

quello del grado scolare 2°. Probabilmente questo è ascrivibile al fatto che le scuole 

secondarie superiori sono suddivise in diverse tipologie, cosa che non avviene per le 

scuole primarie. Si può, altresì, notare come le regioni più piccole, quali, ad esempio, 

la Valle d’Aosta e il Molise, presentino un errore quadratico medio, associato allo 

stimatore diretto, piuttosto elevato. Questo avvalora ulteriormente l’adozione dei 

modelli in questione. 

Tabella 6. Errori quadratici medi per lo stimatore diretto, lo stimatore di Fay-Herriot, e lo 

stimatore di Fay-Herriot nel modello spaziale, per il grado scolare 10°. 

Domini MSE Diretto MSE FH MSE FH spaziale 

Abruzzo 

Basilicata 

Calabria 

Campania 

Emilia-Romagna 

Friuli-Ven. Giulia 

Lazio 

Liguria 

Lombardia 

Marche 

Molise 

Piemonte 

Prov. Aut. Trento 

Puglia 

Sardegna 

Sicilia 

Toscana 

Umbria 

Valle d’Aosta 

Veneto 

5,291 

4,294 

4,090 

3,935 

4,938 

5,279 

4,558 

4,850 

4,351 

5,401 

6,413 

4,489 

5,875 

4,351 

4,024 

3,616 

4,486 

5,653 

7,711 

4,954 

3,161 

3,364 

3,260 

3,090 

3,325 

3,053 

2,812 

3,232 

3,137 

2,961 

4,854 

2,920 

4,800 

3,072 

3,035 

2,986 

3,447 

3,623 

5,123 

3,066 

2,795 

2,703 

3,248 

2,610 

2,347 

3,345 

2,240 

2,766 

2,436 

2,372 

4,050 

2,327 

4,323 

2,511 

3,210 

3,107 

2,654 

3,287 

5,849 

2,202 



 

 

Rispetto al caso del grado scolare 2°, in cui l’adozione del modello di Fay-Her-

riot, sia nella sua versione standard sia in quella spaziale, riduceva sì gli errori qua-

dratici medi rispetto a quelli dello stimatore diretto, ma non di molto, in Tab. 6, ab-

biamo che gli errori quadratici medi dello stimatore diretto vengono in alcuni casi 

addirittura dimezzati. Questo è attribuibile al forte potere esplicativo insito nelle va-

riabili ausiliarie utilizzate, sebbene le varianze degli stimatori diretti fossero origina-

riamente abbastanza elevate. Altresì, rileviamo come il modello spaziale va ulterior-

mente a ridurre la varianza delle stime, eccezion fatta per la Valle d’Aosta, il Friuli-

Venezia Giulia, la Sardegna e la Sicilia, traendo, forse, beneficio da variabili ausi-

liarie che da sole non colgono in maniera decisiva quella che è l’autocorrelazione 

spaziale esistente.  

4. Conclusioni  

In questo lavoro, abbiamo adottato i modelli per piccole aree, nella fattispecie i mo-

delli di tipo area-level, per migliorare le stime provenienti dall’indagine campionaria 

condotta da INVALSI. In particolare, gli stimatori diretti traggono forza sia dalle 

variabili ausiliarie sia dalla componente di natura spaziale. Gli stimatori diretti per il 

grado scolare 2° hanno una distribuzione abbastanza omogenea, o tutt’al più non così 

diversa, sul territorio nazionale; d’altronde per il grado scolare 10°, si osserva una 

spaccatura tra nord e sud dell’Italia. A tal proposito, cerchiamo di capire quali siano 

le determinanti di tale divario nel profitto scolastico. Queste possono essere attribuite 

sia a fattori socioeconomici sia a deficit di carattere infrastrutturale, come, ad esem-

pio, delle classi troppo numerose, o un sottodimensionamento dell’organico scola-

stico. Ancora, gli stimatori diretti prodotti da INVALSI vengono distorti dal feno-

meno del cheating. Benché INVALSI produca questi dati campionari sotto il con-

trollo di osservatori esterni al corpo docente, ciò non preclude la possibilità che i 

risultati dei test siano frutto di contaminazioni fra studenti. Pertanto, il nostro obiet-

tivo è proprio quello di tenere conto di queste possibili contaminazioni, e dunque 

fornire delle stime più attendibili. 

L’adozione del modello standard di Fay-Herriot riduce la varianza delle stime per 

entrambi i gradi scolari considerati, e lo stesso avviene, in generale, quando consi-

deriamo l’estensione spaziale del modello di Fay-Herriot. In questo senso, le varia-

bili ausiliarie giocano un ruolo chiave. Abbiamo considerato variabili ausiliarie di-

verse per i due gradi scolari. Questo al fine di cogliere le relazioni più forti fra la 



 

variabile risposta e le covariate. Quest’ultime sembrano cogliere bene anche le pos-

sibili correlazioni fra i risultati regionali; difatti, per il grado scolare 2°, il modello 

con la componente spaziale riduce di poco gli errori quadratici medi, mettendo dun-

que in discussione l’ulteriore parametrizzazione derivante dalla componente spa-

ziale, in virtù del principio del Rasoio di Occam. Ciò potrebbe essere ascritto a due 

ragioni di fondo. La prima, per l’appunto, costituita dall’assenza di una correlazione 

spaziale significativa, mentre, la seconda insita nella capacità delle variabili ausilia-

rie utilizzate per il grado scolare 2° di catturare la correlazione spaziale.  

Eventuali estensioni di questo lavoro possono tenere conto dell’errore di misura-

zione nelle variabili ausiliarie, nonché di una ricerca più accurata di quest’ultime, 

prendendo in considerazione, ad esempio, i tempi di percorrenza casa-scuola, o altre 

variabili sensibili rispetto alle performance scolastiche.  
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