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Abstract

This paper studies competition among firms connected in an
input-output network, where firms have multilateral market power,
that is, they can potentially affect prices both on input and output
markets, to an extent that is endogenously determined. In equilib-
rium, the price impact is proportional to the number of cycles in
the network whose links measure the strenght of the input-output
connection across each good pair. Considering multilateral market
power affects the model’s predictions in two key areas: the quantifi-
cation of distortions due to market power, and the evaluation of the

welfare impact of mergers.

Keywords: production networks, oligopoly, double auction, supply func-
tion equilibrium
JEL Classification: L13, D43, D44, D57

*This study was funded by the European Union - NextGenerationEU, in the frame-
work of the GRINS -Growing Resilient, INclusive and Sustainable project (GRINS
PE00000018 - CUP: E63C22002140007). The views and opinions expressed are solely
those of the authors and do not necessarily reflect those of the European Union, nor can
the European Union be held responsible for them.

T wish to thank Fernando Vega-Redondo for his guidance throughout this project. I
wish to thank for valuable comments Margaret Meyer, Basile Grassi, Alex Teytelboym,
Marzena Rostek, Ben Golub, Marco Ottaviani, Vasco Carvalho, Marco Pagnozzi, Ariel
Rubinstein, Flavio Toxvaerd, Christoph Carnehl, Jérome Dollinger, Pavel Molchanov,
Cole Williams, participants in the CMA Workshop on Market Power in Supply Chains,
the 2025 BiNoMa, ESSET 2023, the EARIE 2023, the 2023 GSE Summer Forum on
Networks, the 2023 Stony Brook Conference, the CISEI 2022, CTN 2022, 2022 RSA of
the Italian Economic Society, Oligo Workshop 2022, PET 2022, the 2022 RES conference,
the 2021 Asset conference, the 2021 Summer Meeting of the Econometric Society, the
Third International Workshop on Spatial Economics and Market Studies at HSE, the
Young Academics Networks Conference at Cambridge, the EARIE 2021, the XXIX
EWET, the 2020 Winter Meeting of the Econometric Society, the 2020 EDGE Jamboree,
and seminar participants in Sabanci, CREST, CSEF and Federico II, Bocconi, Lucca
IMT and Cambridge

HUniversita Federico IT di Napoli and CSEF. matteo.bizzarriQunina.it




Introduction

Who has stronger market power in a production network? This question
is connected with fundamental questions such as the welfare evaluation of
mergers, the quantification of distortions due to market power, the response
of the economy to shocks. In this paper, I argue that, to properly answer
the question, it is important to use models were firms are allowed to have
multilateral market power, that is they can potentially affect prices both
on input and output markets.

Recent papers find input market power to be sizable, both domestically
(Morlacco (2019), Dhyne et al. (2022)), and in international trade (Alviarez
et al., 2023). However, with the exceptions noted in the literature, most
customarily used models of firm-to-firm trade impose the simplifying as-
sumption that firms are price-takers on the input markets. In this paper,
I study a strategic non-cooperative model of large firms interacting in an
input-output network consisting of many specific supply-customer relation-
ships. Firms trade using a double auction for each good, as in models of
the financial market (Malamud and Rostek, 2017).

The main contributions of the paper are two. First, I show that with
Leontief technology the game in schedules has a unique linear equilibrium.
Then, I explore the connections between the network and the equilibrium
markups and markdowns: there is an appropriate weighted network con-
necting the goods of the economy, the goods network, such that the markups
and markdowns can be seen as a measure of centrality with respect to this
network. Second, I explore what are the implications of multilateral market
power. To do so, I compare the equilibrium of the benchmark model with a
modified model where firms are price-takers on inputs, and a version where
firms take as given all the prices of markets they are not directly involved
in. When firms take some prices as given, the distortions due to market
power are lower: the equilibrium price impacts are lower, and the final
price is also lower.

Formally, firms have a set of input goods, and produce each an output:
some outputs are the input of other firms and these trade relationships, or
input-output links, are exogenous. Firms play a simultaneous game in which

the available actions are supply and demand schedules, relating quantities



of the traded goods to prices: as in a uniform-price double auction, the re-
alized price on every trade relationship is the one where demand and supply
cross. The classic metaphor for the price-taking general equilibrium behav-
ior is that a “walrasian” auctioneer proposes prices and collects supply and
demand “bids”, until all markets clear. The approach followed in this pa-
per takes this metaphor one step further, applying it to non-infinitesimal
firms. The auctioneer acts as a market maker in financial markets, col-
lecting firms’ conditional schedules. Firms, being non-infinitesimal, fully
internalize the mechanism and submit their schedules to affect prices in
their favor.!

Section 2 introduces the model. The technological assumption is that
intermediate inputs are perfect complements. The assumption on labor
generalizes slightly the Leontief functional form, allowing the quantity of
labor to depend quadratically on the output quantity. I do so for two rea-
sons: first, it simplifies the conditions under which an equilibrium exists;
second, this technology recovers as a special case the standard quadratic
cost function often used in models with no vertical connections (e.g. Klem-
perer and Meyer (1989), Pellegrino (2025)).

In the main text I assume that firms directly choose linear schedules
that, under the technology constraint, boils down to assuming that firms
choose a single number, representing the slope of the supply schedule. The
equilibrium cannot be computed analytically, but the game so defined has
many useful properties that make it tractable: it is a supermodular poten-
tial game. Theorem 1 shows that this game has a unique equilibrium for
very general networks, provided any good is traded by at least three agents
(which may be two firms and the consumers). This is a classic condition
for the existence of the linear equilibrium in models of competition in sup-
ply functions (Malamud and Rostek, 2017). In the Appendix ?? I show
that the same profile of linear schedules indeed arises in equilibrium? in a
model where there are uncertain cost parameters of firm’s technology, and

schedules have to be chosen before the realizations.

'This competition in schedules is meant not as a literal description of the workings
of the market (although they are in some cases, e.g. the electricity or financial markets),
but as an abstraction of a bargaining procedure, parsimonious but powerful enough for
the complexity of the problem.

2By which I mean that the best response over all feasible schedules is linear.



Section 4 define the goods network, and characterize the connection
between market power and the network. In such a network, the nodes
are the goods, and two goods are linked if some firms trade both goods.
The strength of a link. The equilibrium prices are proportional to the
centrality in such a network, as is common in network models. What is
more interesting, and specifically connected to market power, is that also
the price impacts have a network interpretation: for example, the price
impact of firm ¢ on its output is proportional to the (weighted) number of
cycles in the goods network, excluding firm ¢. This is because the network
affects the price impact via the pass-through of prices: the number of cycles
measures the strength of the pass-through effect.

In the special case of the Supply chain with layers, all the effects can
be precisely characterized: we obtain that, in the homogeneous situation
where all layers have the same size and number of firms, the markup (and
the price impact on the output) is larger for the more upstream firm (the
farther from the consumer), while the markdown is larger for the more
downstream firm (the closer to the consumer).

Section 5 generalizes the model, allowing general price impact func-
tions satisfying the technical condition that they must be decreasing (in
the positive semidefinite sense) in the slopes of the schedules. This defines
a “Generalized SDFE”, that encompasses as special cases several stan-
dard models: from the classic Cournot and Bertrand oligopoly (without
input-output dimension) to the sequential monopoly a la Spengler (1950).
Moreover, Theorem 3 shows that if one takes the benchmark SDFE and
imposes the assumptions that (i) firms take input prices as given (which
I call unilateral market power) and (ii) firms take as given all prices of
markets where they are not directly involved in (local market power, also
these two models are Generalized SDFE for the proper choice of the price
impact function.

Theorems 2 and 3, together, constitute the main result of the paper:
the description of the implications of multilateral market power in constrast
with, in the above terminology, unilateral and local market power. Theorem
2 exploits that the game still is a supermodular game to prove existence,
and to show the main comparative statics: if the price impact function

is larger (in the positive semidefinite sense), the equilibrium slopes are



smaller. Theorem 3 shows that both with unilateral and local market
power the price impacts are smaller. As a consequence, the final price is
smaller under these two assumptions.

The intuition is as follows. If a firm does not internalize some reactions
in the network, this amounts to that firm perceiving a larger elasticity of
demand and supply and, as a consequence, being able to charge smaller
markups and markdowns. This is because, in the S&D equilibrium, the
elasticity of demand depends on the schedules chosen by directly connected
firms, but also indirectly connected firms. The reason is that, in equilib-
rium, a change in a price triggers a change in all other prices of connected
firms: failing to account for some of these pass-through effects means firms
perceive a different elasticity of demand.?

Multilateral market power does not only have a global effect, but also
changes the balance of market power among firms. Proposition 2 illus-
trates this effect for the supply chain with layers. When market power
is multilateral, as described above, all the layers are symmetric. Instead,
with unilateral market power, the upstream layers have larger markup and
profit than the downstream layers. So, the amount of surplus extraction
predicted by the model is very different.

These considerations suggest that models that impose restrictions on
which prices a firm can affect are not innocuous, and must be taken with
care, especially if these assumptions are just a simplifying modeling device,
rather than coming from specific timing of the market mechanism. This
is typically true of models of general input-output networks that connect
many firms that are very heterogeneous in terms of the nature of their
processes and products, and so very specific assumptions on which prices
firms can or cannot control (or specific timing assumptions) are harder to

justify.

Related literature

This paper contributes to three lines of literature: the literature on com-

petition in supply and demand functions, the literature on production

3The literature on outsourcing and endogenous supply chains provides evidence that
firms are aware of their supply chain and take its structure and their position in it into
account in their decisions, see e.g. Berlingieri et al. (2020), Alfaro et al. (2019).



networks or networked markets, and the literature on general equilibrium
oligopoly.

My contribution to the literature on competition on supply and de-
mand functions is to introduce the technique to the modeling of general
equilibrium oligopoly, in particular with firm-to-firm trade. The literature
has studied the situation where the demand firms receive comes from a
network structure with a large dimension of uncertainty, in Wilson (2008),
Holmberg and Philpott (2018), Ruddell (2018a), Ruddell (2018b), but their
firms only supply to a node in the network, do not trade among themselves.
Firm-to-firm trade is studied in a bilateral setting in Weretka (2011) and
Hendricks and McAfee (2010), always constraining the schedules to a para-
metric functional form. In the finance literature the model is used to study
simultaneous demand and supply of heterogeneous assets: Malamud and
Rostek (2017) show how the strategic complementarity property extends to
the network setting, and characterizes an equilibrium in a general network.
The model has a different purpose (studying centralization in financial
markets) and also two important technical differences: in my paper the
functional form is different, because the Leontief technology gives a differ-
ent best reply equation: the difference is important, because it is crucial in
obtaining uniqueness of the equilibrium. Moreover, I study the Generalized
SDFE version with general price impacts. Rostek and Yoon (2021a), Ros-
tek and Yoon (2021b) and Rostek and Weretka (2012) also analyze similar
models, and share the same differences with my work. Ausubel et al. (2014)
and Woodward (2021) study uniform-price (among other) auctions in the
context of centralized auctions. Vives (2011) studies market power arising
from asymmetric information, rather than network position.

My contribution to the production networks literature is to provide a
model of competition in an input-output network in which all firms have
market power on both input and output markets, and are fully strategic
internalizing their position in the supply chain. Many models explicitly
assume that firms have power to decide/affect prices only on one side of the
market. To this class belong the workhorse sequential oligopoly games in
Salinger (1988), Ordover et al. (1990), Hart et al. (1990).* In another class

of models authors assume that output prices are equal to the marginal cost

4And used in classic textbook treatments, such as Tirole (1988).



times a markup. The concept of the marginal cost itself implicitly implies
price-taking in the input market: indeed, it arises from the price-taking
cost minimization problem of the firm. Hence, it is implicitly assuming
unilateral market power. To this category belong Grassi (2017), Bernard
et al. (2022), Baqaee (2018), Baqaee and Farhi (2019), Baqaee and Farhi
(2020), Magerman et al. (2020), Dhyne et al. (2022), Huneeus et al. (2021),
Arkolakis et al. (2021), Pasten et al. (2020), Pellegrino (2025). A third class
of models are those where vertically connected firms share surplus via some
form of Nash bargaining. Toxvaerd (2024) reviews the recent work in the
area, in the context of a vertical chain. Acemoglu and Tahbaz-Salehi (2025)
and Alviarez et al. (2023) apply this idea to general networks. My results
complements theirs, providing a model that does not rely on the choice of
exogenously specified bargaining weights.® More in general, many models
of networked markets have studied the network defined by the demand:
Galeotti et al. (2024), Pellegrino (2025), Bimpikis et al. (2019), but they
do not focus on input-output connections.

Except for Acemoglu and Tahbaz-Salehi (2025), all these papers feature
also the implicit or explicit assumption that firms do not internalize the
effect of their decisions on sectors/firms further downstream beside the
direct customers. Sometimes this is a consequence of the assumption of a
continuum of firms in each sector (and so sector-level aggregates are taken
as given by every individual firm),® other times it is explicitly assumed.”

I contribute to the literature on general equilibrium with market power
by providing a fully strategic model of the production side with endoge-
nous market power and firm-to-firm trade; furthermore, the game does not
depend on price normalization, and can incorporate general assumptions
on owner’s preferences as in Azar and Vives (2021). In the recent literature
on “general oligopolistic competition” (Azar and Vives (2021), Azar and
Vives (2018) and Ederer and Pellegrino (2022)) do not consider firm-to-firm
trade.

>The papers also differ from mine in other dimensions: Alviarez et al. (2023) study
buyer-seller, rather than input-output connections; Acemoglu and Tahbaz-Salehi (2025)
is a model of endogenous exit: in the benchmark with no exit, the equilibrium is efficient,
unlike in my model.

6This is the case in, e.g. Baqaee (2018) and various others listed in the literature.

"E.g., in Grassi (2017), Dhyne et al. (2022).
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Figure 1: A simple supply chain with two layers: U and D.

The rest of the paper is organized as follows. Section 2 defines the
benchmark model, the Supply and Demand Function Equilbrium (SDFE).
Section 3 describes the solution and the existence theorem. Section 4 shows
the characterization of markups and the connection with the goods net-
work. Section 5 introduces the Generalized SDFE, and explores the effect
of multilateral market power. Section 6 concludes. The proofs are in the

Appendix.

1 A simple example

In this section we illustrate the model and the main take-aways in a the
simplest network where the concept of multi-lateral market power is non-
trivial: a supply chain consisting of one intermediate producer, U, and
a final good producer D. This is represented below in Figure 1. The
intermediate good producer U produces good U using only labor, and sell
it to the final producer D. In turn, the final producer D uses good U to
produce the final output D. The consumers consume both goods U and D.

Consumers have linear demands for both goods that, for simplicity, is
linear with slope normalized to 1, and the goods are neither substitutes nor

complements:

Dc,D(pD) =A- PbD
D.vy(pu) =A—pu

The firms have linear technology, producing one unit of output for any



unit of input: Fy(qu) = qu and Fp(gp) = qp. So, firms profits, when the

realized prices are pp, py, are:

Ty =Pudu (1)
TD =(pD —PU)(]D (2)

The firms play a simultaneous game in which the strategic variables
are the (slopes of the) linear schedules connecting prices and quantities.

Formally:

1. firm U submits a function Sy (py) = Bypy, where By is any positive

real number;

2. firm D submits a function

Sp(pu,pp) = Bp(pp — pv)

indicating both its supply of output, and its demand for the input,

where Bp is, again, any positive real number.

Whichever choice of the firms, the prices py, pp and quantities gy, ¢p

must satisfy the market clearing conditions:

gp =A—pp = Bp(pp — pv) (3)
qu =A—py + Bp(pp — puv) = Bupu (4)

A wide variety of allocations realize for different choices of schedules.
For example, perfect competition is the special case in which By and Bp go
to infinity. Indeed, it turns out that in this example welfare is increasing in
both slopes. We want to extract predictions on firms behavior by looking
for a Nash equilibrium of the game in schedules, in which firms aim to
maximize profits.

Focus on firm U. For each fixed quantity of output ¢y, we can solve the

above system for the inverse demand:

Bp \*
pouv(qu) = (1 + Bp+ 1) (A—qu)



and similarly for the inverse demands faced by firm D, that we call pp 7(¢p)
and pp p(gp). When taking the FOC for firm U, we get:

0 = dqu 1 8pU,U —0
9By U 9By bPu T qu dqu

Oqu
>0
0By ’

= 0. Doing the analogue

From the market clearing conditions it is easy to conclude that

apU,U

dqu
for firm D, we obtain the equilibrium equations:

and so the FOC are equivalent to: py + qu

Opu,u
— =0 5
Pu + qu o (5a)

apD,D apD,U .
Pp —DPu + 4D - =0
dqp dqp

(5b)

Since schedules are linear, the derivatives are just constants: so, it is

immediate to write the best response schedules as:

dp !
Su(py) = ( U’U> U

a Oqu
) ) !
Sp(pp,pv) = ( qu[,)D - ggj) (pp — pu)

So, the slopes BJ,, Bj; that constitute an equilibrium of the game must be

equal to the slope of the above functions, and satisfy:
—1
B*
B = _3PU,U 14 D
8qU B*D +1
Ipp.p 0]9DU)_1 < 1 )_1

B}, = — — : =1+ . 6
b ( qp qp By (©)

The expression highlights the role of the price impacts, and in particular,

the fact that firm D has price impact on both the input and the output
market. The equations can be solved analytically, and it can be checked
that the solution is: B}, = 1/\/5, B}, = V2.

What happens if firm D is a price-taker on the input market? In that

0
PoU _ 0, and so the
Jdqp

case the choice of D does not effect the input price,



equilibrium equations (6) become:

Bx*
B** —1 D
v + By 41
By = 1.

Moreover, this solution is the same we would get solving the model as a
standard sequential monopoly, as shown in Section REFERENCE. The
solution in this case is B}y = 1, Bj = 3/2. They are both higher than in
the case of multilateral market power. So, we can immediately conclude
that consumer welfare is higher in this case.

In the rest of the paper, we explore how this insight generalizes to arbi-
trary networks, and we illustrate examples how taking multilateral market
power into account can change the model conclusions on the welfare impact
of mergers and diffusion of shocks.

So, in a sense, both firms set their “optimal price” on the U, D link.
This seems a contradiction, since sellers would want to raise py while buyers
would want to decrease it. The tension is resolved by the fact that here firms
“implement” a price by modifying the slope of their schedule that, in turn,
changes other firms’ incentives to raise prices. The situation is represented
graphically in Figure 2: firm U faces a residual demand Df;(py), that is
the blue line in the graph, depending on the slope of consumers and the
slope chosen by D. This residual demand induces a profit as a function
of the price py. Firm U wants to charge pj;, the monopoly price for this
residual demand, and so sets a slope that achieves that price: this is the
red line in Figure 2a. But, in doing so, it affects the slope of the residual
supply that firm D faces. As a consequence, firm D changes their choice of
schedule, changing the transaction price to (pj;)s, the optimal monopsony
price for firm D. This, in turns, leads to a new residual demand and a
new profit function for firm U (as in Figure 2b): as a consequence, the
previous optimal price p;; is not optimal anymore, and firm U adjusts its
slope again. This adjustment process continues until the slopes are such
that the optimal price sellers want to charge is equal to the optimal price

for the buyers.

10



Market for good U Market for good U

price price
Best reply of U Best reply of U
Py f===="Kom
(pir)s p-p--7--=-----
(Pir)2 |1+
/
Residual quantity Bost 71“&)1)77 of D
demand
(a) (b)

Figure 2: Graphical representation of the choice of schedule by firm U. On
the left (a): the best reply for firm U to the residual demand given by the
blue line. On the right (b): the optimal choice of firm U leads other firms
to adjust, modifying firm U residual demand and optimal price: so firm U
further adjusts its best reply.

2 The model

In this section I introduce the primitives of the model, that are the firms and
their technology, the input-output network, and the utility of the consumer,

and then define the game played by the firms.

2.1 Setting

Firms and Production Network There are n firms and m goods: their
sets are respectively denoted A/ and M. Each good might be produced by
more firms, but each firm produces only one good. Each firm produces
using labor and a set of inputs produced by other firms, which I denote
as N". Denote the set of all goods traded by firm i as N; = N U {i}.
The consumers’ utility depends directly on a subset of goods, denoted C C
M. Firms, goods and the connections defined above define a directed
bipartite graph G = (N, M, E), where E C (N U M)? is the set of existing

connections. I refer to G as the input output network of this economy. If

11
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(7,g9) € F means that firm ¢ produces good ¢, and (g,7) means that firm i
needs good ¢ for production. For brevity, I write i — ¢ in the former case,

and g — ¢ in the latter .

Notation I denote di* = |N;"| the in-degree (number of intermediate
inputs) of firm ¢, excluding labor, and d; = di"+1 the total degree (number
of goods traded). We use the wage as the numeraire: the price of good g
in labor terms is denoted p,. Bold symbols are used to denote vectors: p
is the vector of all prices (always in labor terms), while pi* = ((pg)genin)

out

are the prices of all input goods of firm ¢, and similarly p¢

2" is the price of

the output, so that p, = (p?“, (pi")’). Similarly, p. = (p,)gec is the vector
of prices of goods consumed by the consumer.

For quantities, it is understood that positive quantities represent out-
puts and negative quantities represent inputs. So, the vector of input and
output quantities traded by firm ¢ is q; = (¢;, —q"), where ¢\ = (qig) g
is the vector of input quantities. The quantity of labor used by firm i is ;.

For a firm choosing quantities g, (;, the profit is:
Il; = piq; — l;

where note that the wage is 1, because all prices are expressed in labor
terms.

If M is a matrix, [M]_; denotes the same matrix to which the rows and
columns relative to input and output goods of good 7 have been removed.
If b is a vector, b_; denotes the same vector to which element ¢ has been

removed.

Consumers The utility function of the consumers is quadratic in con-

sumption and (quasi-)linear in the disutility of labor L:
-1 1 /-1
U(e,L) = A'B; C_§CBC c—L (7)

where ¢ = (¢,)4em is the vector of quantities consumed, A, is a vector, and
B, is a symmetric positive definite matrix. This means that the consumer
demand has the form: D, = A — B.p,.

12



Technology Intermediate inputs are perfect complements, so that to pro-
duce a quantity of output ¢; firm ¢ needs f;,¢; units of input h are needed.
We denote F' € R"™ the matrix that collects the f,,. For the technology
to be viable, we adopt the standard assumption that there must exist a
positive quantity vector g such that ¢; > >, friqsn.We slightly generalize
the Leontief technology to allow decreasing returns in labor, so that: to

it 1
produce q;’“t units of output the firm needs ¢, = f,, Lq;"t + —(c‘];”“‘/)2 labor

units. We do this because, as illustrated below, the decrezskiilg returns in
labor facilitate the existence of a non-trivial equilibrium. So, if k; — oo, the
technology becomes the standard Leontief one; if k; < 0o, it comes from a
variation of the Leontief production function, illustrated in REFERENCE.

We can write the technology constraints of firm ¢ as:
Gij = [t ViE€N"

~ 1
gi _ fi,Lq;mt 4 ﬁ( ;)ut)Q

(8)

It is going to be convenient to define the vector v; = (1, —fi,..., —fin)-

2.2 The game

Schedules The competition among firms take the form of a game in
which firms compete choosing a supply function for the output, and demand
functions for intermediate inputs and labor, respecting the technology con-
straint (8). The players of the game are the firms: ¢ = 1,..., N, and the
actions available to each firm 7 are linear schedules, one for the output S,
and others for intermediate inputs S/, and labor Sy; € R,. Denote the
schedule of intermediate input trades of firm i as: S; = (S, —8!").8The
assumption of linearity means that there exist a matrix of coefficients

B; € R%*% and a vector B; ; € R% such that the schedule is linear:

Si(pi) = Bip;, — Bi,ffz’,L

8We denote the quantities as q; when they are simply variables, with S; when they
are explicit functions of prices.
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The technology constraints (8) imply that the supply function S deter-
mines the whole input schedule, as inputs are bought in constant propor-
tion, so that: S; = S?*wv;. The schedule S is linear, and it turns out
that it is without loss to focus on S** = B;(vip, — fi.1) for some B; € R,
as proven in Theorem 1.

In the Supplementary Appendix, it is shown that the linear equilibrium
studied in the main text remains an equilibrium (and in some case it can
be proven to be unique) also when firms are not constrained to choose a
linear schedule: the linear schedule is the unconstrained best reply among

all possible schedules.

Prices The market prices are, by assumption, those satisfying the market
clearing equations. Since the demand derived by (7) satisfies Walras’s law,
it is standard that one of the market clearing conditions is redundant: we
leave out the labor market clearing equation 3, 4;(p;) = L(p,), and write

the market clearing system as:

Z Sig(pj) = ch(pc> Vg e M (9)
i:geN;

Or, equivalently, using the lifting notation:
Z Si(p) = De(p) (10)
Since the schedules are linear, we can write:

Z S@ (p> = Ac - Bcpc
(Z Bj + §c> p— Z fj,LBj,f A, - Ecpc
j J

Defining the matrices M = }_; B; + B, and M; := 2 B, ¢, the market

clearing system can be written as:
Mp=A.+M;f, (11)

Lemma 3.1 below shows that the system has a unique solution. We
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denote this unique solution as the pricing function mapping coefficient
matrices to prices: p : B — p(B). This function is crucial: it embeds the

information about competition and network interconnections.

Payoffs To complete the definition of the game, we have to define the
payoffs. These are, in short, the profits, calculated in the prices that satisfy

the market clearing conditions (9):

mi(B) == pi(B)Si(p;(B)) — Sri(pi(B)) (12)
= p;'(B)(Bipi(B> - fiLBi,f) - SZ,i(pi(B)) (13)

So, formally, we give the following definition.

Definition 2.1.

A Supply and Demand Function Equilibrium (SDFE) is a Nash equilibrium
of the game G = (N, (A))ien, (T:)ien’), where the players are the firms,
actions are slopes, and the payoffs are the profits defined in (13).

Example 1. Horizontal economy/Standard Supply Function Equi-
librium

Consider the case of N = 2 firms, producing the same output good,
without input-output connections (producing using only labor): v; = 0
for i = 1,2. The demand function in this case is D, = A. — B.p., where
A, B. € R,. This is an instance of the Supply Function competition by
Klemperer and Meyer (1989) (in the parametric case of the quadratic cost

function).

Example 2. The vertical economy
The vertical economy illustrated in the Section 1 is a special case with

n = 2 firms and m = 2 goods, where the technology satisfies: ay = ap =0,
10

0 1)
Moreover, it is a limit case in which k; — oo, so that the marginal costs

vy = lL,up = (1,—1), and consumer demand satisfies: B, =

are constant.

The next example is going to be very useful, because it is the most
tractable case that allows to illustrate both the workings of the model and

some implications in the next sections.
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Ul U2 D1 D2 @ @

Consumers Consumers

Figure 3: A layered supply chain. Left: bipartite representation, the
squares represent goods, the circles firms. Right: firm-only representa-
tion.

Example 3 (Supply chain with layers). A layered supply chain is a
production structure in which firms are divided in N layers, and each layer
produces one of the goods, as in Figure 3. There are n; firms per layer.
Layers are indexed from 1 to N moving upstream (we can consider the
consumers as layer 0). Firms in layer ¢ 4+ 1 sell to firms in layer ¢, firms in
layer O sell their output to the consumer, firms in layer N only use labor for
production. If N = 1, we obtain the standard Supply Function equilibrium
as in Klemperer and Meyer (1989), and the example above. For simplicity,
assume that firms in each layer share the same parameters: so f; 1, k; and
fii+1 only depend on the layer ¢ in which the firm is. So, v; = (1, — fii+1)
for each layer i« < N, and vy = 1 for the last layer.

Each firm 7 < N must submit a schedule §; = (S, —S8!"), and the

matrix B; € R?*? satisfies:

— — 1 —Jiyi
Bi = Bi’Ui’U; = Bl ];7 1
_fi,i+1 fi,i+1

or, equivalently: Sf“t = Ei(pi - fi,z‘+1pi+1 - fz‘,L) and an = fz‘,z‘+1§i(pi -
fi,i+1pi+1 - fi,L)

3 Solution and existence

First of all, the next Lemma makes sure that the pricing function and

the payoffs defined in 2.2 is well-defined: the payoffs are indeed uniquely
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defined as a function of the slope coefficients B.

Lemma 3.1. If the production network is connected, the system (9) has a

unique solution.

The proof is in the Appendix A.1.

3.1 Residual demand and price impact

The choice of a best reply of firm i to a profile B_; can be written as:
mBaXpi(B),<Bipi(B) — By y) — ti(p;(B)) (14)

subject to the technology constraints (8). However, the best reply prob-
lem can be more conveniently expressed in terms of the (inverse) residual
demand subject to the market clearing conditions 9; and, analogously, in
terms of the residual supply for the input market. We use the term residual
schedule to indicate both the demand and supplies.

The key to understand the equilibrium conditions is to express the best

reply problem using the residual schedule.

Lemma 3.2. 1. There exist a function p; : R% x A_; — R%  such
that B solves the best reply problem (14) if and only if the quantity
vector qf = BI'p} (B}, B_;) — fipv; solves:

max ¢;p; (q;; B_;) — l; (15)

q;.li
subject to the technology constraints (8).

2. The function pf is the residual schedule, and has the expression:

p;(q;; B_;) = Ai(B—i)(Ai(B—i) - q;) (16)

A

where A;(B_;) : —0q,p; = [(M — B;)™'];, and A, is a vector that is

also a function of B_;.

Moreover, A; is positive definite, and decreasing in all B; in the pos-

itive semidefinite order.
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The proof is in Appendix A.2.

The residual schedule, as in standard oligopoly models, represents the
portion of demand and supply not met by competitors. Crucially, in an
input-output setting, the residual schedule also contains information about
the network position of firms. The coefficient matrix A; is called the price
impact (using a financial terminology) because it collects the slope coeffi-
cients of the (inverse) supply and demand schedules, describing what effect
firm ¢ has on its input and output prices. It is a measure of market power:
the larger the price impact, the larger the surplus that the firm can extract
from that buyer or seller.

The best reply problem expressed as in (15) is more convenient, because
all the network interaction is summarized by the residual schedule. The
optimization then, as in the example of Section 1, is analogous to the
optimization of a monopolist, choosing the quantity (or the price) on the
residual schedule to achieve its optimal profit. The key difference is that
firms “implement” different prices by changing their schedule: and crucially

this, in turn, changes the incentives of other firms to charge higher prices.

3.2 Existence and uniqueness

In this section I present the existence and uniqueness result for the Nash
equilibrium.
Using the formulation of Lemma 3.2, and noting that the technology

out

constraints (8) imply: gq; = ¢?*v;, taking the first-order conditions we get:

1
vip! — A — g =0
7

Solving, we find that the optimal schedule is:

I o T
U;D;

out out
4 (p) viNv+ 1/k;

So, the schedule is linear, and the coefficient satisfies:

— 1\ *
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These are the equilibrium fixed-point equations. To understand the mean-
ing, note that, for example, in the vertical economy of Section REFER-
ENCE, we have v/A;v; = A% + A" that is: the slope depends inversely
on the sum of the price impacts on both the input and the output: we see
a first effect of multilateral market power. In general, since v; has negative
elements for the inputs, the links between outputs and inputs are negatively

weighted, so that:
/ __ Aout /AN 1 A out,in
v\v; = A7 + [N = 2150,
The next Theorem proves existence and uniqueness of the equilibrium.

Theorem 1.
There exist a unique Nash equilibrium of the game G, and it is in pure
strategies.” Moreover, the equilibrium coefficients By, ..., B, € R? satisfy

(17).

The proof is in Appendix, A.3. The proof considers a modified game G’
with action spaces X; = R and payoffs: U;(xy,...,z,) = Inm(e™, ... e*™).
The new game corresponds to a reparameterization of the strategies of
the original game, and a monotonic transformation of the payoffs. As
such, any Nash equilibrium of the game G corresponds to one and only
one Nash equilibrium of the game G’. The game G’ = (N, (X, U;)ien) is a
supermodular game, and thanks to the assumption of increasing marginal
cost the strategy space is compact: B; < k;, so the iteration of the best
reply always converges.'® Moreover, G’ is also a potential game, and the
potential is strictly concave: as a consequence, the game has a unique Nash
equilibrium.

A first corollary is that in equilibrium we do not need to worry about

exit of firms: profits are never negative.

9If Assumption 2 were assumption is violated, we get that the slopes of the firms
competing tend to infinity, so technically the equilibrium does not exist; but from an
economic perspective the limit is well defined, the involved firms simply behave as per-
fectly competitive. This is because, as highlighted by Klemperer and Meyer (1989), with
constant marginal costs the supply function equilibrium behaves as price competition.

10This is not a necessary condition for the equilibrium. Indeed, the vertical economy
example in the Section REFERENCE is an example where the equilibrium slopes are
finite even when k; — oo.
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Corollary 3.1. In equilibrium profits are:

1 —2 2
B (vip, — f;
2]{;1 ) (vzpz fL)

=B, (1 - 2;3) (vip — fir)? (18)

mi(B) = Eip;"vi (U;pi — fir) — fiLEi (ngi — fir) —

and, moreover, B; < k;, so we get 7;(B) > 0 for all firms 4.

4 Equilibrium and the role of the network

So far, we identified the first-order conditions. Now we want to analyze
what are the implications of the model in terms of firm’s market power,

particularly in relation to the network of input-output connections.

4.1 Markups and markdowns

The standard approach to measure market power is to look at the gap

between price and marginal cost, or marginal revenue products.

Definition 4.1.

The total cost of firm i is: Ci(g"™") = >_,p; (q;) fijai™ + % (¢°**)*. Define
oC;
the (absolute) markup as p; := p; — pwr
4
The revenue product of input g is: Riz(qiy) = ]g’;qf“t_zj gD (q;) fi;q0"t—
%( ou)?  The markdown on input g is: piy = —2 — p,.
2 8qz-g
Lemma 4.1. The vector p; = (j1;, —jtig) satisfies:
pi = g7 N, (19)

where A; is the price impact.

So, in the equilibrium of this model, each firm charges both a markup on
the output and markdowns for each input. The magnitude of the markup
and markdowns depends, not surprisingly, on the price impact: equation

(19) is nothing beyond the standard Lerner equation connecting the slope
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(or elasticity) of demand to the price charged. The slope of the firm equi-
librium schedule B; depends inversely on the markups: the equilibrium

equation (17) can be expressed also as:

1
() op; + k!

Ei:

where vip, = pu; + > g Jigltig aggregates the markup and markdowns: the
larger this sum, the smaller the equilibrium slope. If the firm did take
prices as given, the price impact would be zero and also the markups.
Markdowns are heterogeneous, and depend on the network position:
this includes of course the number of competitors, but not only: also the
number of indirectly connected customers or suppliers matters. The next
subsection illustrates this through the simple examples of the vertical econ-
omy and the supply chain with layers. The subsection after connects the

markups to the network structure in general.

4.2 Examples
4.2.1 Standard supply function equilibrium

The standard supply function equilibrium of Example 1 the price impact

is simply the inverse slope of the residual demand:

A = <Bc +) Bj) _ (20)

J#
4.2.2 The supply chain with layers

In the supply chain with layers the matrix M could be large if the number
of layers N is large. So, to derive the price impact is more convenient
to directly use the expression of the residual schedules. Let us focus on
the case B, = f;;41 = 1, for simplicity. For firms in layer 1, the slope of
demand is B. + (ny — 1)By. Firms in the upstream layer face a demand
n1B1(p1 — p2) + (n2 — 1)Ba(p2 — p3), where now is necessary to solve the

first layer equations for p; as a function of p,. Proceeding iteratively, we
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find the expression of the (direct) residual schedule:

——out, _
=@ )(A _piz_gni —1)Bi(pi — Pi+1z (21)
Der;lrand Sup;),ly of
from customers competitors
¢ = \(Kzn)_lpi—i-lj_\(ni — 1) Bi(pi —pin1) (22)
Su;)?)ly Demand of
from suppliers competitors
where:
——out 1 1
A == 23
; &+ZW& (23)
1<t
i = (24)
; nj Bj

represent the “aggregate” price impact of firms in layer ¢, respectively, on

the output price, and the input price.!!

These are intimately connected
with the network: we can see that K;m is increasing with ¢, while K:n is
decreasing.

Inverting the Jacobian of this, we find that the price impact matrix of

firm 7 is equal to:

—out -1

(A )M+ (g — 1)B; ‘ —(n; = 1)B;
—(n; — 1)B; (A + (n; — 1)B;

(2

Define Det = (A,")~1(AS")~! + (AL + (A7) V) (n; — 1)B; the deter-

K3 3

minant of A;'. Finally, using the expression (19), we can compute the

1We might understand intuitively these equations, and in particular the term
——out

(s = 1)Bs + (A7 + &)
the direct competitors in the same layer) imply a summation of the slope coefficients
(the term (n; — 1)B;), while vertical relationships (across layers) imply an harmonic
sum (the expressions for the price impacts in Equation (24)). This has an interesting
analogy with the equations describing the electrical resistance: also in that case, when
resistances are set in parallel (horizontally related), their total resistance is the sum of
individual resistances, whereas when they are in sequence (vertically related), the total
resistance is the harmonic sum.

by noting that horizontal relationship (for example,
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markup vector:

K = qé’“t/\iv
_ﬁﬁ((ﬂ%*+0@—w& (n; —1)B; >v

——out

~ Det (n; —1)B; (A, )+ (n; — 1)B;
gt A
- Det \ —(&7")
Kout
——out —in N \—1 o .
= ¢t A+ (A +/Ei)n )(ni —1)B; (26)

N+ (A + ) (n —1)B;

It turns out that in the homogeneous case of k; = k and n; = n, the
“total” price impact KZ” + Kiom is constant, and B; too: as a consequence,
only the ranking of K?Ut and A;" matters. The following Proposition makes

this formal.

Proposition 1.
Suppose k; = k and n; = n for all layers i. In the Supply and Demand
Function Equilibrium for the layered supply chain:

1. the markups are larger the more upstream the layer is, while mark-

downs are larger the more downstream a layer is;

2. if n; > n; firms in layer j have larger profits than firms in layer i.

The intuition for the result above is simple: upstream firms perceive
a smaller elasticity of the residual demand on output markets the more
they are upstream, and so charge higher markups. The opposite happens
with residual supply and markdowns. If n; is constant across layers, the
situation is completely symmetric, and so the increase in markups and
decrease in markdowns exactly offset each other, and the firms all have the
same profits. Hence, each layer extracts the same surplus. Instead, if some
layer becomes more competitive (n; is larger), the corresponding firms have

lower profits.
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4.2.3 The vertical economy

As illustrated in the introductory example in Section 1, the price impacts

1 1\
Ay = (BC,U + (BC,D + B_D) ) (27)

Ap— (1/ Bep 0 ) (28)

are:

0 1/(Bu + B.v)

Hence, the first order conditions (17) reduce to (6) in Section 1.

This example shows that the price impact upstream Ay can be both
larger or smaller than Ap, depending on the parameters. This is because in
this economy, contrary to the supply chain with layers, the firm upstream
also sells to consumers directly: having more customers increases the slope

of demand, and this effect may counteract the pass-through effect.

4.3 The goods network

What can we say on the relation between the network position and market

power in general? We summarize the discussion in the following remarks

Remark 4.1 (Prices as centralities). From Equation REFERENCE, we
can write:

p=D'I-G)'A

where the diagonal matrix D has the slope of the excess supply > i Bigg
as diagonal entry in position g, g, and the matrix G is defined as:
—M,,
Gigh = 2
! Zj B .99
This can be thought of as the adjacency matrix of a weighted network,
where nodes are goods, and a link is present when the price of h directly
affects the quantities traded (to be precise, the excess supply) of g. The
denominator is a normalization, measuring the effect of the price of g on
the own excess supply. We label this network the goods network. Note

that the weights of the links are endogenous and determined in equilibrium
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by the slopes of the schedules chosen. With this interpretation, the prices
measure the Bonacich centrality in the goods network according to the
weights vector A. 12

To understand better the interpretation of the link weights, let us con-
sider the special case in which B; = 1 for all ¢, and the consumer demand
satisfies B, = I (the identity).'® In this case, the entries of the matrix M

would be:

M,, = |firms trading g, except ¢ + 1]
Mg, = —|firms selling h, buying g| — |firms selling ¢, buying A
+ |firms buying both g, h|,

so, the weight of the link between g and h is high when, among the firms
trading h, many transform g and h or vice-verse, but not too many use
both as inputs. This highlights that the network effect is strong when h, g
have an input-output connection: in such a case, when the price of one goes
up the other tends to increase too. Instead, an horizontal connection, since
goods are perfect complements, because naturally in that case an increase
in the quantity of one triggers a decrease in the price of the other: the

weight can even be negative, if this effect is strong enough.

The network does not only offer an interpretation of the prices, but also

of the price impacts and the slopes.

Remark 4.2 (Markups as centrality). Define the goods network ecluding
firm ¢ as the goods network, where all the weights are computed as if
B; = 0, that is, excluding firm . Call GG; the corresponding adjacency

matrix. Then, the price impact can be written as:

Ai = [D7 v = G) v

So that A;p, is proportional to the number of direct and indirect paths

between good ¢ and h in the goods network excluding firm 2.

12The goods network is undirected in terms of connections, but the weights may be
asymmetric: this is an effect of the normalization.

13This in general is not the equilibrium, but it is always possible to find a configuration
of k; such that this is exactly the equilibrium.
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As a consequence, the markup/markdown vector satisfies:
= D (T — G laows = Dy~ G,
1 q; i IN(©) i N (@) Vi i i i

So, the markup is proportional to the Bonacich centrality of good ¢ in the
goods network relative to firm 4, with weights given by the vector ;. The
markup also depends on the cross effect of the output price on the input.
However, since v; has negative elements, this effect is weighted negatively:
this is because when the cross-effect is large, a large markup (low quantity),
triggers an increase of the input price, that decreases the markup.
Finally, since the slopes depend inversely on ¥ u,, we conclude that the

equilibrium slopes depend inversely on the weighted sum of the centralities.

Definition 4.2.
Define the goods network relative to firm ¢ as the network (M, L) where:

1. the nodes are the goods, M;

2. two goods-nodes g, h are linked if there is at least a firm trading both,
apart from i: (h,g) € L if and only if there is j € N such that
h e N; and g € N;;

3. The adjacency matrixz of the network relative to firm v is the matriz
G that has weights:

Mg
hoh D; 44D ni
Example 4 (“Tree” network). Consider the production network depicted
in Figure 4a. There are 4 goods: U, W, D and C. Each good except C' is
produced by two firms: e.g. U is produced by U1 and U2. In Figure 4b is
represented graphically the goods network of this economy relative to firm
D?2: the network is disconnected, because without firm D2 there is no firm
trading both goods U and D.

Since the goods network is disconnected, the price impact matrix is a

block-diagonal matrix. In this case, since firms have only one input, it is

26



Consumers
(a) A production network where 4 goods
are traded: U, D, W and C. Each good(b) The goods network relative to firm
except good C'is sold by 2 firms. D2.

actually diagonal, and is:

Aqut
Ai - ! 0
0 Al

Point 1 of Theorem REFERENCE then means that A% is equal to the
slope of the schedule of firm C' minus the supply of D1, times the network
effect, which is the number of cycles of the output link in the reduced
graph; and, similarly, for Ai”. The number of cycles is a measure of size
and, the higher the weights REFERENCE, the higher the measure. In this
example, the cycles centred in good U are just 1 (the trivial cycle), so the
indirect effect is equal to 1; while in the output good is a higher number.
Point 2 then allows to conclude that in this case. since A; is diagonal, the
markup is simply proportional to the price impact.

For a more general case, let us consider the supply chain with layers,
in which the price impact is given in Equation REFERENCE. The main
difference is that now the network is connected, and so a change in the
output quantity will also affect the input price. Since M is an M-matrix,
it is easy to conclude here that A; has all positive entries. So, an increase
in output quantity will decrease both the output price, directly, but also
the input price, indirectly. Why? An increase in the output price will
make the competitor sell more, so buy more, and so trigger an increase

in the input price. This is why A; 4, > 0. By the same reason, the price
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impact on the output is still measured by the cycles centered in good 1, but
now the cycles involve also the inputs. Again, this is because the network
is connected. So, the markup is proportional to the cycles centered in 1,

minus the measure of direct and indirect links between 1 and 2.

5 The role of multilateral market power

5.1 General price impacts

The key feature of the model studied so far is that firms have multilateral
market power: they can affect prices in all the markets they are involved in.
What are the implications of multilateral market power? To answer this
question, in this section I introduce a model that simultaneously general-
izes the supply and demand function competition and various other classic
models of oligopolistic competition, with and without networks. This al-
lows us to do comparative statics on market power, comparing the model
of the previous sections with an analogous model in which firms are price-

takers on input markets.

Definition 5.1.
Consider a profile of functions A = (Ay, ..., A,), where:

Ai: By — N(B_;) € R%x%
such that for all i:
1. A; is continuous;
2. N; is positive semidefinite;

3. A; is decreasing in the profile B in the positive semidefinite ordering.

A Generalized SDFE is a profile of schedules B* = (BY, ..., B}) such
that each Bj solves the best reply problem (15), but where the residual

schedule satisfies:

aql_pf(qi, B,Z) = AZ(Bfl) VB_;Vi € N
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The Supply and Demand function competition is a Generalized SDFE,
because A; derived in Lemma 3.2 is continuous and decreasing. The interest
of the Generalized SDFE is that many other standard models are also
special cases. For example, Walrasian equilibrium is the special case where
A; = 0 for each i. Also Cournot oligopoly is a special case: consider the
setting of the standard Supply Function Equilibrium of Example 1 and
change A; = B% in Equation (20). What this means is that firms behave as

if competitors ‘ljrlave choosen schedules with constant slope (set B; to 0 in
the equation): but schedules with constant slopes are fixed quantities, as
in Cournot. Indeed, it can be checked that this Generalized SDFE yields
exactly the same equilibrium quantities and price as the Cournot oligopoly
with the same parameters of Example 1. The case of Bertrand is analogous,
provided we use differentiated products.!* What is perhaps more striking
is that also some sequential models are also special cases of the Generalizes
SDFE, as we argue below.

The next Theorem proves existence of an equilibrium, and the funda-

mental comparative statics result on the price impacts.

Theorem 2. 1. A generalized SFE exists. Moreover, it is a game of
strategic complements, and as such it always has a mazrimal and a

minimal equilibrium (possibly identical).

2. Consider two models in which the profile of price impact functions
are, respectively A and A?, such that for each profile B we have
ANB_;) > A2(B_;) for all firms i (in the p.s.d. ordering). Then,
in the maximal and the minimal equilibria, the slope coefficients are

lower the first model: (B')f < (B?)! (in the p.s.d. ordering) for each

firm .

The key intuition both of part 1) and 2) comes once again by strategic
complementarity: a lower price impact means higher slopes, that in turn
trigger higher best response, and equilibrium slopes.

The proof is in Appendix C.1.

The previous Theorem looks at comparative statics with respect to

14This is because in my model each good has a unique price, and so the standard
homogeneous goods Bertrand competition violates this assumption.
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price impacts. If there is only one final price, it is possible to extend the

comparative static exercise looking at the effect on the final price.

Corollary 5.1. Consider two profiles of price impact functions A! and A?
ordered as in Theorem 2, part 2. In any network such that the consumer
only consumes one good C = {c}, the price of the final good is higher in

the model with smaller price impacts A2.

This is the tool with which we can explore the effect of different as-

sumptions on multilateral market power.

5.2 Comparison with unilateral and local market power

As discussed in the Literature section, many papers in the production net-
work literature assume as a simplification that input prices are taken as
given, and that prices in other markets are taken as given. In the Gen-
eralized SDFE model, it is easy to embed these two assumptions, with
assumptions on the functional form of the price impact. Let us first define

these two assumptions precisely.

Definition 5.2. 1. The model with unilateral market power is a Gener-

alized SDFFE in which firms take input prices as given.

2. The model with local market power is a Generalized SDFE where
firms take as given the prices in the markets in which they are not

directly involved in.
The next Theorem is the main result of the Section.

Theorem 3.
The models of Definition 5.2 are special cases of the Generalized SFE, for

different choices of the price impact functions A;:

1. Unilateral market power: for all firms i using intermediate in-

Aynilateral _ (M - Bl)z_zl 0’
’ 0 0

15Tt turns out that this approach is exactly the one that allows to recover the Sequential
Oligopoly as a special case of the model.

puts:
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2. Local market power:

Aﬁocal(Bii) — (M’L o B’L’)il

Moreover, in both cases, the price impacts are smaller, that is Vi €
NVB,Z we have Aéocal(Bii) S A;nultilateral(Bii) and A?m‘lateml(Bii) S Almultilateral(Bii)

Now, to explore the effect of multilateral market power, is sufficient to
consider the price impact functions of the previous Theorem, and compare
them with the baseline. For example, consider the setting of the vertical
economy of Section 1; and suppose we want to compute the Generalized
SDFE with unilateral market power. According to Theorem 3, we simply

have to modify the equilibrium equations by changing the price impact of
Equation (28) to:
: 10
Asequentwl _
P 00

while Ay, having no (non-labor) intermediate inputs, is unaffected. It is
clear that Aunilateral < Amultilateral. a1y q thanks to Theorem 2, we know that
in equilibrium this implies that the slopes are higher in the unilateral model.

Using Corollary 5.1, we can also conclude:

Corollary 5.2. For any network in which such that there is only one final
good, with unilateral or local market power the final price is smaller than

in the benchmark SDFE with multilateral market power.

This is the main result on the role of multilateral market power. We
express it restricting market power on inputs because it is the standard
assumption, but if we were to restrict market power on outputs and set

A%" = 0, the exact same conclusion would hold.

Remark 5.1 (Sequential Monopoly is a Generalized SDFE). The
most standard way to model price setting in the context of the vertical
economy is perhaps the Sequential Monopoly a la Spengler (1950), that is
a sequential game where firms set output prices sequentially, starting up-
stream with U and then D, and D (by construction) takes the input price

pp as given. It turns out that the first-order conditions of the Sequential
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Monopoly thus defined imply exactly the same equilibrium price and quan-
tity of the Generalized SDFE with unilateral market power. To understand
why, let’s write the first-order conditions of the sequential model. Since it
is a monopoly, setting quantities or prices is exactly equivalent. By back-
ward induction start from firm D. The inverse demand is as in Section 1:
pp = A—qp. Maximizing the profit of D while taking py as given produces
the FOCs for the downstream firm:

0
pp —pu + %QD =0 (29)
0
Notice that this is precisely the same as Equation (5b) when ({)]ﬂ = 0,
4D

that is the FOC of the Generalized SDFE with unilateral market power.
The mechanism is the same: since the firm does not internalize the price
impact on the input, that term disappears from the FOC.

To understand why also the FOC for the upstream firm mimic the
SDFE is a bit more subtle. In the sequential monopoly model, the (inverse)
demand for firm U, in equilibrium, is given by the equilibrium choice of
firm D as a function of pyy. But this means exactly to use equation (29) and
the consumer demands, to back up py;: this is exactly the same as solving
the market clearing conditions for a given choice of schedule of firm D.
So, we get that the equilibrium demand for firm U is exactly the same in
the Sequential Competition, and in the Generalized SDFE with unilateral
market power!

In the Supplementary Appendix, I prove that the analogy does not stop
at the Sequential Monopoly, but it extends also to Sequential Cournot, that
is a Generalized SDFE with unilateral market power, with the additional
“Cournot” assumption that firms consider flat the schedules chosen by

direct competitors.

We conclude the section showing that multilateral market power also
affects the way the surplus is split, in addition to the total size. In the case

of the layered supply chain, we can make precise characterizations.

Proposition 2. 1. If firms take the input price as given, markups are
still increasing going upstream, while there are no markdowns: as a

consequence, profits are increasing upstream.
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2. If firms take the output price as given, then markdowns are increasing
going downstream, while there are no markups: as a consequence,

profits are increasing downstream.

If firms instead do not internalize their effect on input prices, but only
outputs, the symmetry is broken, because firms consider the effect of net-
work position on the elasticitiy of demand only on, e.g., the output side.

These results yield important insights on the hidden consequences of
using models in which competition is artificially constrained to be unilat-
eral. If such a modeling strategy is not motivated by the specifics of the
market studied, but is just an assumption imposed for tractability, as in
production network models, the result above suggests that implication for
both the total amount of distortions due to market power and the relative
ranking of market power among firms can be severely changed. The supply
and demand function equilibrium provides a setting in which the modeler
does not have to choose on which side of the market firms can affect prices,
rather the price impact is an additional prediction that can be asked to the

model.

Example 5. Vertical mergers can be welfare improving or not
For a particularly stark example, consider an instance of the Supply
chain with layers, with 2 layers, with 1 firm in the upstream sector 2 and
ny firms in the downstram sector, 1. Suppose after a merger between the
firm in 1 and a firm in 0 the merged firm does not sell its intermediate
good to others but it keeps it all to produce the final output. Then all
other firms in 1 cannot produce anymore, and we are left with a monopoly,

as shown in Figure 5. The monopoly price in the after-merger setting is:

1 —1
M
—A(B+—
P ( +1+1/BC>

M . BC . o1 . .
where BY = {775 is the equilibrium coefficient of the supply of the only
firm.

In the pre-merger equilibrium instead the final price is:

~1
A 1
p:BC+_mBlBQ':A<BC+1+ 2 >

n1B1+B2 n1B1
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Merged firm

Consumers Consumers

Figure 5: Left: pre-merger economy. The blue circle indicated the merging
firms 2 and la. Right: the economy after the merger: 1b and 1c are driven
out of the market because the merged firm does not sell them the necessary
input anymore, and the merged firm becomes a monopolist.

where By and B; are as usual the coefficients of the equilibrium supply and
demand functions, and the last equality is obtained using the best reply
equation for By;. Hence we get that the price is higher after the merger if
and only if 2B, < nyB;. The expression shows the trade-off between double
marginalization, represented by the factor of 2 that appears because the
pre-merger economy is a line with 2 steps, and the extent of foreclosure,

represented by n; Bj, that measures how much competition is lost after the

merger:
2 X B, < n1 B
~ S~~~
decreased double extent of foreclosure
marginalization
If B. > 1, since By < 1, for ny = 2 the merger is welfare-improving.

Since the RHS goes to infinity for ny sufficiently large, the merger is wel-
fare reducing. In particular, we can identify a n, such that the merger is
welfare-decreasing if n > n, (because the foreclosure effect is stronger),
and welfare improving if n < n,. Such value is defined implicitly by
B, = n, Britilateral (5,

Now consider the model with unilateral market power. We can define a
similar threshold n*, defined by B, = n*Bl“(n*). By Theorem 2 for any
ny, Bynilateral(p ) > pmultilateral(y ) "5 that n, < n*. Hence, it follows that
for n € (n.,n*) the merger is welfare decreasing with multilateral market

power, but welfare-increasing with unilateral market power.
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6 Conclusion

This paper provides a way to model oligopoly in general equilibrium as
a game in which firms fully internalize their position in the supply chain
and have market power both over inputs and outputs, in an endogenously
determined way. I show that such features are desirable in a input-output
model with market power: if absent, both the aggregate and the relative
ranking of distortions due to imperfect competitions is crucially affected.
This suggests that, when modeling complex networks of large firms with
market power, simplifying assumptions might affect in a sizable way the
results.

A further interest of the competition in schedules framework is that
it is a standard model for procurement auctions (Holmberg et al., 2019;
Klemperer and Meyer, 1989; Ausubel et al., 2014), where the consumer is
the auctioneer. The results developed can help shed light on price formation
in procurement auctions where the bidders are simply the last stage of a
potentially complex supply chain. The exploration of the implications of

this for design are an interesting avenue for further research.
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Appendix

A Proofs of Section 3

A.1 Proof of Lemma 3.1

We prove that it is always possible to invert the market clearing conditions
(11).

Consider the quadratic form @’ Ma. This is equal to ' Max =, x' Bix+
' B.x = > xiBix; + x.B.x., where, as for the prices, we denote x; =
(%g)gen;-

Restrict attention to a subset of n firms, chosen such that each firm
produces a distinct good: for each good g, denote 7, the firm producing g
that is chosen. Define F' the matrix with elements f; 5. By the assumption
of viability, I — F” is an M-matrix, and in particular is invertible (Horn
et al., 1994). Moreover, the columns of I — F” are the v;, vectors: so, they
must be linearly independent. So, there are at least n linearly independent
v;. So, there are at least n linearly independent »; vectors. Now: ' Mx =
x.Bx.+ ), B;x'v;v,x. For this to be zero, it means that & must either
be zero, or be orthogonal to v; for every ¢. But since they include a basis,
if follows that @ = 0. If o’ (]\/[ — R) x = 0 by analogous reasoning x must
be orthogonal to all ©; for j # ¢. So, either it is 0, or is parallel to ;.
Then, with an induction argument analogous to the one below, we obtain
the thesis.

O
A.2 Proof of Lemma 3.2
Consider the system 11. It can equivalently be rewritten as:
q,+ (M — B)p = A, (30)

We know from Lemma 3.1 that M — B; is positive definite, so we can

invert it and write:
pr<qi) = (M - Bz’)il(A - qz)
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Reordering the equations so to have all the rows associated with inputs and

ouputs of ¢ first, we can write the matrix M in blocks as:

M—B = M; — B; M,
M! ., M

1,—1

where M; is the submatrix relative to input and output goods of i, M_; the
submatrix relative to goods that are neither inputs nor outputs of ¢, and

M, _; is the off-diagonal block. Using the rule for block matrix inversion:

p; = [(M — Bi)_l]i (Ai —q; — Mi,—i(M—i)_lA—i)
Deﬁning Az = [(M — Bi)_l]i and Al = Az — Mi,_i(M_i)_lA_i we obtain
the thesis.
UJ

A.3 Proof of Theorem 1

To derive the game G’ as defined in the text, first let us check that we
can limit ourselves to schedules of the form REFERENCE. Solving the

maximization problem in Lemma 3.2, we get:
S (p;) = (vihiv; + 1//%)_1 (vip; — fiL)

As a consequence, we have B; must have the form B;v,;v) for some B; € R,..

So, the payoff of firm i can be rewritten as:
7i(Bi, B_;) = B; (vip; — fir)

Now, we consider the game G’ with the payoffs defined in the main text.
Since both In(-) and exp(-) are monotone, a profile B is a pure Nash equi-
librium of G if and only if the profile z = (In By, ...,In B,,) is a pure Nash
equilibrium of G’. It follows that the Nash equilibrium of G’ is unique if

and only if the Nash equilibrium of G is unique.

Existence The best reply equation (17) shows that B; € [0, k], and is

continuous. So, by Brouwer’s fixed point theorem, there exist an equilib-
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rium.

Potential To show that the modified game G’ is a potential game, we
show that the second cross-derivatives of the payoffs are equal. Since the

supply is S; = B;v;vip;, the profit can be rewritten as:

™ = p;Sl _ % (SEUt)Z
Bipvvip;, — %E

B, <1 — %Ez) (”;1%)2

2 (vip,)?

To compute the derivative of the payoffs, we must differentiate the matrix

M1, Tts derivative is:
9 M= —vra > Byt + B | M7 = —M 60 M
8BZ ' jYiV 5 c iU g

J
Moreover, v;p = v;M~*A. So:

0

Using this, we find that the derivative of the profit is:

om; — 9 — QG —
3T, ( ) (v:ip) 5 Bi) (vip) P
— — 1 —
_ 1 — 1 —o;B; R 5
= B, (1 - 504@'31') (’i);p)2 al — 20, M ',
Ei (1 — —Oéigi)
2
— ou;, OJdlnm .
Notice that with our reparameterization B; = e® and = 20T Since
Or;  OlnB;
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7w, =B <1 - %Ei) (9;p)?, the derivative of U; becomes:

2
8Uz 1 7 i A N
PR S Yy
&xi 2 1— 105<ex'
2 (2
1 iBi = )
=1 5 al — QBZ"U;M_LUi
(1 — —Oél‘Ei)
2
Using again 31:
82 2B, B0, M~ 0,0, M\, = 2 (/M 9;)" i
Ui o (67 1 Y BN N 1 2 . .
0r,0m; =-3 T 5 — 20, M vi—i—?('viM vi) 1=
(1 — —CYZ'Bi)
2
) 02U, U, ) )
Since = , the game is a potential game.

am]@wi N axﬁx]
This means that there exists a function ® such that:
od B oU;

0*d B 0*U;
8932-835]- N @:El@:v]
without knowing the expression of ®, we can compute its Hessian matrix:
denote it as H.

For each ¢. In particular, this means that So, even

Uniqueness Now, we prove that the potential is strictly concave. This
proves that the game can have at most one Nash equilibrium. To prove it,

we prove that the Hessian matrix H is negative definite, by proving that
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—H is strictly diagonally dominant. Sum the off-diagonal entries:

i#j i#j
- ~ 1~ \2
= Z 2BJB7J (’U;M 1'0])
i#]
= 2B M (Z Em;) Mo,
i)

— 2B,/ M~ (M — B, — Byo;o),) M9,

= 2B;0, M~ MM 0, — 2B, M~ (B.+ Byo;0)) M9,

< 2B;0M~'o; — 2B;0 M~ (Bjo;0%) M~'v;

- —H

where the strict inequality is because B, is positive semidefinite, and there
must be at least a path from each firm j to the consumer, so that [M~'9;] #
0. Since the expression above is a sum of positive terms, it follows that
Hj; <0, and —Hy; > >, |Hij|, so —H is strictly diagonally dominant,
so is negative definite. Hence, ® is concave and the Nash equilibrium is
unique.

Moreover, since the diagonal of H is negative, it follows that the payoffs
are concave, so the FOCs (17) are necessary and sufficient for the equilib-
rium. Moreover, the game is a supermodular game, so the unique Nash

equilibrium is also the unique rationalizable action profile. O
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B Proofs of Section 4

B.1 Proof of Lemma 4.1

The revenue product generated by input g is:

Rk(ng) = q;pz 2 (qZOUt) _'_pgqig

out / out

=dq; Y;p; — 2Z (qz ) +ngig

2
o Qig <ng > ai (QZg)
= UD; | Vi + Dg4i
fig fig fzg g9

We first compute the marginal cost and the marginal revenue product:

Dge ij (a7 0) fig = > [Nl figal™ + g™ (32)
J
aRig 1 / ng / Qig 1
= —v;p; — U Nvi — i 5 — —— [\ g +p (33)
04ig Jig Zg z%c ik | ]g J
1
= [Avily, qie + Py (34)
ig
So, the markup and markdowns are:
. out 80
IU’Z - pz 8qout

- plout ijflj &quut + Z zvz fZJQOUt

= 'vzpz - alqlout - v/Az'UzquUt + [Aivz] qsut

= [Ai'vl] qzout = [Aiqi]i

Wig = ( ™ [Asvil, qin +pk) — Dk

= — [Awi], g7
So, the markup-markdown vector (with right signs) is: A;q;. O

B.2 Proof of Proposition 1

The proof follows from the following three lemmas, proven in the Supple-

mentary Appendix.
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Lemma B.1.

B , Hk;éi ny. By Be
()™= (AT + A = .
Hk;éi nkBk + Bc Zj;éi Hk?fi,k?éj nkBk
o n B Bc
v I Txp1 70 Be (36)

Tl mBr + Be 20 Miss g 7B

Lemma B.2. Consider the equilibrium profile B*. If n; > n; then BR;(X, Bi;) >
BR;(X,B*,,) for all X < B}, B;.

Lemma B.3. In equilibrium n; > n; implies B > Bj.

We have that v; = (1,—1) for each i. Moreover, by market clearing
" = q¢" = Qfor any i, j. So, using the expression for markups computed
in REFERENCE, and noting that by Lemma B.3 if n, = n; B, = B; for
all sectors and so market clearing conditions imply that p; —p;—1 = £ and

A=A + Kfm are constant for any 7, we get:

out __ A?Utxil

" 1+ Bn-1)+AK"
AR

(1+nm-1)B)+A "

W=

mo__
Ky =

)=

Now inspecting the right hand side of the expressions we see that the
markup is increasing with A%, which is itself increasing as one goes up-
stream. Then it follows that the markup is increasing going upstream, and

symmetrically for the markdown. ]

C Proofs of Section 5

C.1 Proof of Theorem 2

Part 1 By definition, the payoff is the objective function in REFER-
ENCE. This function has Hessian matrix equal to —kli]i — 2A;, and so is
negative definite: so the payoff is strictly concave. Since the technology
constraints are linear, we get that the first order conditions are sufficient

and necessary for optimization, and the best reply equation REFERENCE
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still represents the equilibrium. The same equation shows that B; € [0, k],
and A; is continuous, so the best reply map is also continuous. So, by
Brouwer’s fixed point theorem, there exist an equilibrium.

The best reply equation and the assumption on A immediately allow to
conclude that the best reply is increasing in the profile of slopes of other

firms B_;. By Topkis’ Theorem, the equilibrium set is a lattice, so it has a

maximal and minimal element.

Part 2 Define BR', BR? : [[,[0, k;] — [[,[0, k] the best reply maps for,
respectively, model 1 and 2. We know that for any profile B we have,
entrywise, BR'(B) > BR?(B). Call (B*)! the maximal equilibrium in

model 1 and (B*)? the maximal equilibrium in model 2. We have:
(B*)! = BR'((B")') > BR*((B")")

Since the best reply is monotonic, we have that iterating the best reply of

model 2 starting from (B*)* we eventually reach the maximal equilibrium:
(B*)' > BR*((B*)") > -+ > (B*)?

which is what we wanted to show. The case of the minimal equilibrium

works analogously.

]

C.2 Proof of Theorem 3

1. In the unilateral case the best reply equation works differently, be-
cause it is:
max g,p;
s.t. ¢;+ (M —B;)p = A. From this, we get the residual demand. But
now, instead, the prices of inputs are fixed. Only the output price is
allowed to change. For consistency, only the output quantity can af-

fect it. We can express the equations more conveniently decomposing
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the matrix M as follows:

Mi down Mz down—up
M = 7 ’
(M.’ M up )

i,down—up

where, after reordering, N;,, contains the subset of all goods that
are inputs of 7, or all goods that are directly or indirectly connected
to inputs of i. N gown contains the remaining goods: the output of
1, and possibly all downstream goods that are not connected to any

inputs.
The equations involving g, are:

A

q; + (Mi,down - Bi,down)pgown + (Mi,doum,up — Bi,doum)pz‘,in = Az

We can solve only for the downstream prices:

P = (M down — Bidown) " (Ai—q;, — OP;.up)
and we get:

PP = (M down — Bz’,down)_l]ii(Ai — ") + const
So, the price impact is:

Aunilateral _ [(Mi,down - Bi,dOwn)_l]ii 0
i 0 0

where [(Mi,down_éi,down)_l]ii = [(My—Byu—M] M~} Mi,down)_l]ii-

i,down~"" —i.down

Amultilateral

To compare with , we have to note that we can also de-

compose Amultilateral as:

-1
Amultilateral _ Mi,down Mi,downfup A
= / .y
Mi,down—up Mi,up

For simplicity, from now on denote the blocks of the matrix M — B;
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as:

M_B - Ap Ay
Ay oA,

Aym’lateral
)

. Using block inversion, can also be written as:

-1

. A A

A;Lnllateral :,le_r)go (All TA2 ) (37)
2 3 N

where [; is the identity of appropriate dimension. But now, the matrix
on the right-hand side is positive definite, so we get that a sufficient

condition to conclude Aunilateral < \multilateral i,

A A\ (A A (00,
Ay, Ay) \ay 1a,) " o T4,
that is true, and so in the limit we obtain Aunilateral < pmultilateral

. For the case of the local market power it is immediate from the def-
inition. If q; + (M — Bi)p = A, but the prices of the other markets

are to be taken as given, then the equations involving g, are:
q; + (M; — B))p; + M; _ip_;, = A;
and, inverting, we obtain:
p,=(M;—B;) ' (A —q;, — M; _ip_;)
and the price impact is:

Aéocal — (Mz . Bz‘)_17

so 1t 1s immediate to conclude:

Aéocal —_ (M'L o Bi>71 < (Mz . Bz . (Miout,in)/M:ilMiout,in)—

1 .
A multilateral
— N4

Y

as we wanted to show.
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C.3 Proof of Corollary 5.1

If there is a unique final good, say good 0, then the vector A has just
one nonzero entry, corresponding to good 0. Moreover, the matrix B, is
composed by all zeros except a positive entry B. g in the 0,0 diagonal
place. So, the vector A — Bcf07L is equal to: (Ag — Bc,oofo,L)A, where
Ao — Begofor > 0.

So, the price can be written:

_Ap - Bc,oofo,LAquA

Po = A,

Now we know that M is increasing in each B;, and so we obtain that p, is

decreasing in each B;.

C.4 Proof of Proposition 2

If the firms do not take the price impact into account on input markets,

the best reply equations become:

1

A, —1)B; - Agut
B; = — il ) where A; = ————
A, +(n—1)B;+1 L+ A

and A" is increasing upstream. Hence, in equilibrium, B; is decreasing

upstream, which means that markups are increasing.
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Supplementary Appendix: TBA
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