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We consider the recently introduced application of the Deck of Cards Method
(DCM) to ordinal regression proposing two extensions related to two main
research trends in Multiple Criteria Decision Aiding, namely scaling and ordinal
regression generalizations. On the one hand, procedures, different from DCM (e.g.
AHP, BWM, MACBETH) to collect and elaborate Decision Maker's (DM's) preference
information are considered to define an overall evaluation of reference
alternatives. On the other hand, Robust Ordinal Regression and Stochastic
Multicriteria Acceptability Analysis are used to offer the DM more detailed and
realistic decision-support outcomes. More precisely, we take into account
preference imprecision and indetermination through a set of admissible
comprehensive evaluations of alternatives provided by the whole set of value
functions compatible with DM's preference information rather than the univocal
assessment obtained from a single value function. In addition, we also consider
alternatives evaluated on a set of criteria hierarchically structured. The
methodology we propose allows the DM to provide precise or imprecise
information at different levels of the hierarchy of criteria. Like scaling procedures,
the compatible value function we consider can be of a different nature, such as
weighted sum, linear or general monotone value function, or Choquet integral.
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Abstract: We consider the recently introduced application of the Deck of Cards Method (DCM)
to ordinal regression proposing two extensions related to two main research trends in Multiple
Criteria Decision Aiding, namely scaling and ordinal regression generalizations. On the one hand,
procedures, different from DCM (e.g. AHP, BWM, MACBETH) to collect and elaborate Decision
Maker’s (DM’s) preference information are considered to define an overall evaluation of reference
alternatives. On the other hand, Robust Ordinal Regression and Stochastic Multicriteria Accept-
ability Analysis are used to offer the DM more detailed and realistic decision-support outcomes.
More precisely, we take into account preference imprecision and indetermination through a set of
admissible comprehensive evaluations of alternatives provided by the whole set of value functions
compatible with DM’s preference information rather than the univocal assessment obtained from
a single value function. In addition, we also consider alternatives evaluated on a set of criteria
hierarchically structured. The methodology we propose allows the DM to provide precise or
imprecise information at different levels of the hierarchy of criteria. Like scaling procedures,
the compatible value function we consider can be of a different nature, such as weighted sum,
linear or general monotone value function, or Choquet integral. Consequently, the approach we
propose is versatile and well-equipped to be adapted to DM’s characteristics and requirements.
The applicability of the proposed methodology is shown by a didactic example based on a large
ongoing research project in which Italian regions are evaluated on criteria representing Circular

Economy, Innovation-Driven Development and Smart Specialization Strategies.

Keywords: Multiple Criteria Analysis; Deck of Cards-Based Ordinal Regression; Scaling pro-

cedures; Robust recommendations; Multiple Criteria Hierarchy Process.

1. Introduction

Complex decisions require to take into consideration a plurality of points of view. For example, decisions
related to circular economics (Stahel, [2016) have to be based on environmental aspects, economic aspects
such as gross domestic product or employment rate, and also sustainability (Elliott,, 2012) or smart special-
ization (McCann and Ortega-Argiléd, 2015) aspects. Evaluation and comparison of different alternatives in
complex decision problems — in our example, feasible economic policies and strategies — ask for adequately
articulated models embedded in advanced decision support procedures. They allow to aggregate partial
evaluations with respect to the many considered criteria into a global evaluation. In addition, observe that

in such complex problems, many heterogeneous stakeholders, as well as several experts in different domains,
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are involved together with a plurality of policy-makers. The results supplied by the formal decision model
adopted for these types of complex problems heavily depend on the adopted parameters, so it is necessary
to verify the stability of the obtained recommendation at the variation of the considered parameters. Just
to give an example, if the trade-offs between the different criteria are represented by the weights assigned to
them, it is reasonable to check if and how the comparisons between the alternatives change with a variation
of these weights. Moreover, all the above-mentioned actors in the decision process — experts, stakeholders
and policy-makers — in general, have no expertise in the methodology and techniques for decision analysis.

Consequently, the decision support procedure for complex decisions needs:
e to permit handling several heterogeneous criteria;
e to collect the preference information from the different actors with a procedure as simple as possible;

e to collect rich preference information permitting to define in the most precise way the parameters of

the decision models required to deal with the decision problem at hand;

e to provide information about the stability of the comparisons between alternatives when the parameters

of the decision model are perturbed.

Multiple Criteria Decision Aiding (MCDA) (for an updated collection of state-of-the-art surveys see!Greco et al.
2016, while for a review of the evolution of MCDA over the past 50 years, with a discussion on the per-
spectives and a future research agenda, see |Greco et al.[2024) has developed a certain number of concepts,
methods, techniques and procedures that can deal with the above requirements. Among them, we consider
the ordinal regression (Jacquet-Lagreze and Siskos, [1982). It asks the Decision Maker (DM) to compare
pairwise a subset of the considered alternatives, called reference alternatives, in terms of preference. These
comparisons define a preference model, very often a value function, aiming to represent in the most faith-
ful way the DM’s preferences. As, in general, there is a plurality of value functions compatible with the
DM'’s preferences, a theoretical development of the ordinal regression, the Robust Ordinal Regression (ROR)
(Greco et al., 2008), proposes to considers the whole set of decision models compatible with DM’s prefer-
ences answering to robustness concerns. With respect to the richness of the preference information provided
by the DM, recently it has been proposed to extend the ordinal regression paradigm considering preference
information related not only to the mere preference between reference alternatives but to its intensity too
(Barbati et al., [2024). This means the DM can specify that, among three alternatives a, b, and ¢, not only
a is preferred to b and b to ¢, but also that a is preferred to b more strongly than b to ¢. To enable the DM
to present this type of information in a clear and understandable way, the Deck of Cards Method (DCM)
(Figueira and Roy, 2002; |Abastante et al.,2022) has been applied. To this aim, the DM is initially provided
with a card for each reference alternative and a certain number of blank cards. Firstly, the DM rank orders
the cards according to their preferences on the related alternatives. Secondly, the DM expresses the inten-
sity of these preferences including a certain number of blank cards between two consecutive alternatives so
that the greater the number of blank cards, the greater the preference between the alternatives. Once this
preference information has been provided by the DM and a value function (for example, a weighted sum,
an additive value function or a Choquet integral) has been selected to restore it, the instance of the value
function that better represents these preferences can be obtained solving a linear programming problem. In
particular, it is solved by minimizing the sum of the deviations between the values given to the reference

alternatives by the DCM and the value assigned by the induced value function that is then used to give



a value to all considered alternatives (not only reference ones). This approach has been called Deck-of-
Cards-based Ordinal Regression (DOR) (Barbati et all, 2024). It has the advantage of collecting very rich
preference information, that is, not only information about the preference ranking of reference alternatives
as in ordinal regression but also information related to the intensity of preference between them. Even if
DOR considers richer information than ordinal regression, it keeps its main weak points. In particular,
DOR does not consider the possibility that multiple value functions may represent the DM’s preferences
with comparable accuracy. Moreover, DOR, does not admit that the DM could provide imprecise preference
information, for example, because they cannot exactly say how many blank cards have to be included be-
tween two alternatives. Another aspect not considered in DOR is that the set of criteria may be structured
in a hierarchical way. Consequently, in this paper, we propose some extensions of DOR permitting to handle

all the above problems and, more precisely:

e to define overall evaluations of reference alternatives by procedures collecting and elaborating DM’s
preference information different from DCM, such as AHP (Saaty, 11977), BWM (Rezaei, 2015) and
MACBETH (Bana e Costa and Vansnick, 1994), which, for different reasons (for example because
already known by the DM or the analyst) can be more appropriate in the specific decision problem at
hand;

e to consider the whole set of value functions compatible with the DM’s preferences for DOR method,
applying the ROR (Greco et al., 2008). It builds a necessary and a possible preference relation holding

in case an alternative is preferred to another for all or for at least one compatible value function;

e to consider the whole set of value functions compatible with the DM’s preferences for DOR method, ap-
plying the Stochastic Multicriteria Acceptability Analysis (SMAA) (Lahdelma et all,[1998;|Pelissari et all,
2020). Based on a sample of compatible value functions, it computes the frequency with which an
alternative is ranked in a certain position or the frequency with which an alternative is preferred to

another one;

e to generalize the DOR method by taking into account the possibility that the DM provides imprecise

information about the number of blank cards between reference alternatives;

e to permit the DOR approach to take into account problems presenting a set of criteria hierarchically
structured. This allows the DM to give preference information and to obtain final recommendations on
the considered problem both at global and partial levels. To this aim, the Multiple Criteria Hierarchy
Process (MCHP) (Corrente et all, 2012) will be adapted to this context.

The proposed extensions make DOR method very flexible and adaptable to real-world applications, taking
into account two main research trends in MCDA: on the one hand, the scaling procedures such AHP, BWM
and MACBETH, and, on the other hand, the extensions of ordinal regression, that is, ROR and Stochastic
Ordinal Regression (Kadzinski and Tervonen, 2013).

The paper is structured in the following way. In the next section, we introduce the basic framework re-
calling the basic principles of DOR methodology. Section 2] extends DOR to take into account the previously
mentioned issues discussing in detail the possibility of applying scaling procedures different from the DCM.
The DOR’s extensions to ROR, SMAA and MCHP are provided in Sections B.1] B2l and B.3] respectively.
How to include imprecise information provided by the DM in DOR is described in Section @ A didactic
example, based on a large ongoing research project, is presented in Section [0l to illustrate the application of

the new proposal. Finally, Section [6] collects conclusions and future directions of research.



2. The Deck of Cards based Ordinal Regression

Let us denote by A = {aj,as,...} a set of alternatives evaluated on a coherent family of criteria (Royl,
1996) G = {g1,...,9n}. We shall assume that each criterion g; € G is a real-valued function g; : A — R and,
consequently, g;(a;) € R is the evaluation of a; € A on criterion g;. For each g; € G, X; = {x},..., 2"} is
the whole set of evaluations that can be taken on g; and they are such that acll < --- < z". In the following,

for the sake of simplicity and without loss of generality, let us assume that all criteria have an increasing

direction of preference (the greater g;(a;), the better a; is on g;). Thus, (z]™,...,z}'") represents the ideal
alternative, achieving the highest possible evaluation across all criteria, whereas (x1,...,x}) represents the

anti-ideal alternative, with the lowest possible evaluation on all criteria.

Looking at the evaluations of the alternatives on the considered criteria, the only objective information
that can be obtained is the dominance relation for which a;, € A dominates a;, € A iff a;, is at least as
good as aj, for all criteria and better for at least one of them (g;(aj,) > gi(aj,), for all i = 1,...,n, and
there exists at least one g; € G such that g;(a;,) > gi(aj,)). Even if it is objective that if a;, dominates aj,,
then a;, is at least as good as aj,, the dominance relation is quite poor since, comparing two alternatives, in
general, one is better than the other for some criteria but worse for the others. For this reason, to provide
a final recommendation on the alternatives at hand, one needs to aggregate the evaluations taken by any
alternative a € A on the criteria from G. In the field of MCDA, three main approaches have been proposed

for aggregation of criteria:

1. using a value function U : R™ — R non decreasing in each of its arguments, such that, for any
aj,aj, € A, if U(gi(aj,), ..., gn(aj)) = U(gi(aj,), ..., gn(aj,)), then aj, is comprehensively at least
as good as aj, (Keeney and Raiffa, [1976);

2. using an outranking relation S on A defined on the basis of evaluations taken by alternatives from A
on criteria from G, such that for any a;,,a;, € A, aj,Sa;, means aj, is comprehensively at least as
good as aj,; the relation S is reflexive, but, in general, neither transitive nor complete (Roy, 1996);

3. using a set of decision rules expressed in natural language, such as, for example, if “a is fairly preferred
to @' on criterion g;; and extremely preferred on criterion g;,, then a is comprehensively at least as
good as a’”; the decision rules are induced from some examples of decisions provided by the DM
(Greco et all, 2001).

In this paper, we consider the aggregation of criteria through a value function U and we take into considera-
tion a recently proposed methodology called DOR (Deck of Cards based Ordinal Regression) (Barbati et all,
2024). It collects the preference information from the DM using the Deck of Cards method (DCM)
(Figueira and Roy, 2002; |Abastante et al), [2022) and defines the parameters of the value function U using
an ordinal regression approach (Jacquet-Lagreze, [1982) by means of a mathematical programming problem
that allows to represent the DM’s preferences.

Considering a set of reference alternatives A® C A, in the following, we shall briefly review the main
steps of the DOR method:

1. The DM has to rank-order alternatives in A from the least to the most preferred in sets L1, Lo, ..., Ly C
AR Alternatives in Ly, are preferred to alternatives in Ly, for all h = 1,...,s — 1 and alternatives
in Ly, are indifferent among them for all h =1,...,s;

2. The DM can include a certain number of blank cards e;, between sets Lj, and Ly 1. The greater ey, the

more alternatives in Ly are preferred to alternatives in L. Observe that the absence of blank cards



between Lj and Lp,1 does not mean that the alternatives in L; are indifferent to the alternatives
in Lpy1 but that the difference between the value of the alternatives in Ly and the value of the
alternatives in Lj is minimal;

. Following |Abastante et al. (2022), the DM has to provide the number of blank cards ey between the
“fictitious zero alternative” and the set of the least preferred alternatives, that is, L1. In this context,
the “fictitious zero alternative” is a fictitious alternative ag having a null value, that is, U(ap) = 0. To
make coherent the notation introduced above, let us assume Lo = {ag};

. Each alternative a € A" is assigned a value v(a) such that if @ € Ly, and o € Ly, v(a) =

v(d)+ (ep+1), h =1,...,s — 1 and if a € Ly, then v(a) = ey + 1. Consequently, in general,
h—1

for a € Ly, we have: v(a) = Z(ep +1);
p=0

. The parameters of the value function U are determined in a way that for all a € A®, U(a) deviates as
less as possible from k-v(a) with k a scalarizing constant that can be interpreted as the value of a single
blank card. More precisely, for all a € A%, one considers the positive and negative deviations ot (a)
and o~ (a) between U(a) = U(g1(a),...,gn(a)) and k-v(a), that is U(a)—o " (a)+0~ (a) = k-v(a). The
sum of all deviations ot (a) and 0~ (a),a € A", is then minimized solving the following optimization
problem having as unknown variables the constant k and the deviations o0 (a) and o~ (a), in addition

to the parameters of the value function U

T = min Z (07 (a) + 0~ (a)), subject to,

acAR
EModel
U(a) = U(a"), for all a,a’ € AR such that v(a) > v(d'), O
1
U(a) —ot(a) + 0 (a) = k-v(a) for all a € AR, pbM
k>0,
ot (a) =20, 07 (a) =0 for all a € AR,
where:
o [EModel ig the set of technical constraints related to the considered function U: for example, if U

is formulated as a weighted sum, we have:

Ula) = Zwi - gi(a) for all a € A,
i=1

w; =0, foralli=1,...,n, EModel

n
E w; = 1,
i=1




while, if U is formulated as a general additive value function, we have:

Ula) = Zui(gi(a)) for all a € A,
1

1=
Uu; 2! < u; z! ,foralli=1,...,nand for all f =2,... ,m,,
! ! Eé\;/[Xdel
ui(azil):0, foralli=1,...,n,

n
Z u; (2]") = 1.
i=1

More details on different formulation of value function U and, consequently, of the set of con-

straints EMo%! will be given in the

e U(a) > U(d') for all a,a’ € AR such that v(a) > v(a’), imposes that the ranking of alternatives

from AR provided by the value function U is concordant with the one provided by the DM,
e U(a) — o7 (a) + 07 (a) = k- v(a) imposes that the value of a € A® is proportional to v(a),
e k > 0 imposes the non-negativity of the scalarizing constant k,
e 0t(a) >0, 0 (a) > 0,a € A® impose the non-negativity of the positive and negative deviations.
The following cases can occur:

1. =0 and k£ > 0: in this case, the function U obtained as solution of the LP problem () represents the

preferences of the DM without any error;

2. @ = 0 and k£ = 0: in this case, the function U obtained as solution of the LP problem (II) does not represent
the preferences of the DM since the scalarizing constant k is zero and, therefore, all alternatives in A

have a null evaluation being indifferent among them;

3. > 0 and k£ > 0: in this case, the function is able to represent the preferences of the DM with the

minimal error ;

4. 7 > 0 and k£ = 0: in this case, the function U obtained as solution of the LP problem (Il) does not

represent the preferences of the DM since, as in above point 2., the scalarizing constant k is null.

In the following, we shall present a small didactic example showing the DOR application.

Example 2.1. Consider four regions Ri,Rg,R3,Ra evaluated on a 0 — 100 scale with respect to the three
criteria of Circular Economy (g1), Innovation-Driven Development (g2), and Smart Specialization (g3), as
shown in Table[d. Using the DCM and taking into consideration a “zero Region” Ro as a reference of a null

Table 1: Evaluations of regions with respect to considered criteria

Regions Circular Economy: g; Innovation-Driven Development: g2 Smart Specialization: g3

R4 90 100 80
Ro 100 70 40
R3 30 50 60
Ra4 20 40 40

value level, the four regions Ri,Ro,Rs and Ry are ordered from worst to best so that Lo = {Ro}, L1 = {Ra},



Ly = {R3}, Ls = {Ry} and Ly = {Ry}. Moreover, let es be the number of blank cards (written between square
brackets [ |) between Ly and Lsiq, s =0,...,3, so that the complete preference information is the following:

Ro [5] Ra [2] Rs [5] Ro [2] Ry.
By applying the DCM, we assign the following value to each project:
e v(Ro =[0,0,0]) =0,
e v(Rg =[20,40,40]) = v(Ro) + o+ 1 =6,
e v(R3 =[30,50,60]) = v(R4) +e1+1=09,
e U(Ry = [100,70,40]) = v(R3) + es + 1 = 15,
e v(Ry =[90,100,80]) = v(Ry) +e3+ 1 =18.

Considering a value function U(-) expressed in terms of a weighted sum, the following LP problem has to be
solved for the unknown variables wy,ws, w3, o0t (Ri),0 " (Ri),i =1,...,4, and k:

-

g=min Y (c¥(Ri)+ 0 (Rs)), subject to,

URs) = w1 - g1(Rs) + wn - 92(Re) + w3 ga(Re) i = 1,....4

wy 2 0,wy 2 0,w3 = 0, EModel

w1 + wg + wg = 1, 2)
U(Ry) =2 U(R2) = U(R3) = U(Ra), EDPM
URi)—0T(Ri)+0 (Ri) =k-v(Ry), i=1,...,4,

k>0,

ot(Ri) > 0,07 (Ri) =0, i=1,...,4.

The solution of the LP problem (2) yields a sum of errors @ = 1.176, a scaling constant k = 4.902 and
the following weights for the considered criteria wi = 0.471,we = 0.176, w3 = 0.353. Using them, one can
obtain the values listed in Table[d W

Table 2: Scores assigned to regions by the value function U(-) obtained solving the LP problem (2I)

Regions U(-) wv() k-v() of()
Ry 88.24 18 88.24 0
Ro 73.53 15 73.53 0
R3 4412 9 44.12 0
Rg 30.59 6 29.21 1.18

q|
coc ool !
N

As previously explained, k represents the value of a blank card and, consequently, it has to be greater
than zero to avoid that all alternatives from A are indifferent between them. Therefore, in order to ensure

that this happens, we solve in an iterative way the following LP problem:

k* = max k subject to,
EDM



where 7 (7) is an admitted deterioration error with respect to the optimal value @ obtained solving (). If
k* = 0, to keep the deterioration error as low as possible, 17 (7) should be increased in increments of 0.01,
starting from 0, until £* > 0.

In the following, we shall provide a small didactic example to show the necessity of maximizing the k value.

Example 2.2. Consider three alternatives evaluated on two criteria with increasing direction of preference,
as shown in Table [3:

Table 3: Alternatives’ evaluations on two criteria Table 4: DM’s preference information
Alternative g1 ¢ Alternative Level
a 0.3 0.7 a v(a) = 100
04 0.6 e1 =29
08 1 b v(b) =70
€y — 69

Suppose the DM provides preference information for alternatives a and b as shown in Table[4] Specifically,
a 18 preferred to b, putting 69 blank cards between b and the zero level and 29 blank cards between a and b.
Assuming the DM’s preference model follows a general additive value function, the LP problem (1) has to be
solved having as unknown variables o (a), o~ (a), o7 (b), o= (b), uy (0.3), uy (0.4), uy (0.8), us (0.6), us (0.7),
ug (1) and k (see the LP problem (B.1) in[Appendiz B for the extended formulation of the problem to be

solved in this case). Solving this problem, one finds the solution shown in Table [3.

Table 5: Marginal value functions obtained solving the LP problem (B.)
U1(0.3) U1(0.4) u1(0.8) UQ(O.G) UQ(0.7) UQ(l) k o
0 0 0 0 0 1 0 0

Here, k = 0 means that the blank card has null value. In order to maximize it, one has to solve the LP

problem ([3) (see the LP problem (B.2) in[Appendiz B for the extended formulation of the problem to be
solved). Setting n(c) = 0 in problem (B.2), one gets the marginal values shown in Table [G:

Table 6: Marginal value functions obtained solving the LP problem (B.2)
U1(03) U1(0.4) u1(08) UQ(OG) UQ(O7) UQ(l) k o
0 0.4118 0.4118 0 0.5882 0.5882 0.0059 0

This value function accurately reflects the DM’s preferences with a positive value for the blank card. B

Some remarks are now at order:

1. LP problem (II) assumes that overall evaluations v(-) and U(-) are expressed on a ratio scale, that is,
U(a)/U(b) = v(a)/v(b) for all a,b € A. If instead evaluations v(-) and U(-) are to be expressed on an
interval scale, that is, [U(a) — U(b)]/[U(c) — U(d)] = [v(a) — v(b)]/[v(c) — v(d)], for all a,b,c,d € A
(Stevens, 11946), LP problem (d) has to be properly reformulated. More precisely, remembering that
the admissible transformations for a ratio scale are the multiplications by a positive constant, that is
U(-) =k-v(-),k > 0, while the admissible transformations for an interval scale are the positive affine
transformations, that is U(-) = k-v(-)+h, k > 0,h € R, we can conclude that to handle interval scales

the regression model () has to be reformulated replacing the constraint

Ula) —o"(a) + 0 (a) = k-v(a) for all a € AT, 4)



with the constraint
Ula) — ot (a) + 0 (a) =k -v(a) + h for all a € AT (5)

Observe that if v(-) and U(+) are expressed on an interval scale, the information related to the number
of blank cards ey between the worst alternative and the zero alternative is redundant, because it is not
related to any difference v(a) — v(b), a,b € A, For the sake of simplicity, if not explicitly mentioned,
we refer to the case in which v(-) and U(-) are expressed on a ratio scale. Anyway, what we discuss

with respect to the ratio scale can be straightforwardly extended to the interval scale.

In the following, we shall continue the Example 2.1] showing how the described procedure changes

once U(-) and v(-) are expressed on an interval scale.

Example 2.1 (continuation). Assuming v(-) and U(-) are expressed on an interval scale, the solution
of the LP problem (2) in which constraints

UR:)— o (Ri) +0 (Ri) =k-v(Rs), i=1,...,4
are replaced by constraints
URi)—0"(Ri)+0 (Ri) =k-v(Ri)+h, i=1,....4

yields a null sum of errors @, k = 4.722, h = 1.667 and the following weights for the considered
criteria: wy = 0.5, we = 0.08, ws = 0.42. Using them, one can obtain the values listed in Table[7. M

Table 7: Scores assigned to regions by the value function U(-) expressed on an interval scale and obtained solving the LP
problem (2)

Regions U(-) v(:) k-v()+h ot () o ()

Ry 88.67 18 88.67 0 0
Ro 72.50 15 72.50 0 0
R3 4417 9 44.17 0 0
Ry 30.00 6 30.00 0 0

2. Until now, we considered the DCM to assign an overall evaluation v(a) to the reference alternatives
a € AR, However, for several reasons, the Decision Maker (DM) may encounter difficulties in using
the DCM. For instance, when a high number of blank cards is required to evaluate the alternatives,
the method may be perceived as essentially asking the DM to directly assess their values. In some
cases, this perception could make the approach seem unrealistic, contradicting the original purpose of
the DCM, introduced by [Simos (1990) to reduce the DM’s cognitive burden by using a limited number
of cards, thus making it easier to manipulate a ratio scale. However, as already noted in [Barbati et al.
(2024), depending on the specific problem, the DM’s prior experience, and their individual predispo-
sition, alternative procedures can be used to define overall evaluations v(a). Among the simplest of
these scaling methods, let us remember the direct rating and point allocations (Doyle et al., [1997), as
well as SMART and its extensions (Edwards, [1977; [Edwards and Barron, 1994). Anyway, the most
well-known among the methods proposed in literature to assign a value to alternatives on the basis of
preference information provided by the DM are AHP (Saaty, [1977), BWM (Rezaei, 2015) and MAC-
BETH (Bana e Costa and Vansnick, 1994). All these methods are based on pairwise comparisons of
alternatives from A, For example, AHP provides evaluations v(a),a € Af, on a ratio scale, because

it maintains the ratio v(a)/v(b) = v/(a)/V'(b) between the evaluations of any a,b € A, taking into



consideration the DM’s pairwise comparisons ¢, of reference alternatives a,b € A in the classical
1-9 Saaty scale. Assuming that the DM retains b not preferred to a, the points in the scale have the

following interpretation:

1- a and b are equally preferable, denoted by ¢, = 1, translated to v(a) = v(b),

3- a is moderately preferred to b, denoted by cqp = 3, translated to v(a) = 3 - v(b),
5- a is strongly preferred to b, denoted by ¢, = 5, translated to v(a) =5-v(b),

7- a is very strongly preferred to b, denoted by ¢, = 7, translated to v(a) = 7 - v(b),
9- a is extremely preferred to b, denoted by cqp, = 9, translated to v(a) =9 - v(b).

Values 2, 4, 6 and 8 denote a hesitation between 1-3, 3-5, 5-7 and 7-9, respectively. AHP considers
the matrix C' = [cq) abeAR, With cqp = i for all a,b € AT, In general, there is no set of evaluations
v(a),a € AR, satisfying all equations v(a) = c,p - v(b), a,b € A. AHP computes the values v(a),a €
AR as the components of the eigenvector ¥ = [(a)],c4r associated to the maximum eigenvalue of C

(Amaz) normalized so that Z v(a) = 1. Formally we have
acAR

Co b = Anas -
S (@) =1. (6)
acA

Procedures different from the eigenvector have been proposed to obtain the values v(a),a € AR, from
the judgments in the matrix C' = [cyp], pear and, among them, we remember the logarithmic least
squares (Crawford and Williams, 1985), the least squares (Jensen, 1984), the weighted least squares
(Chu et all, [1979; Blankmeyer, 1987), the logarithmic least absolute values (Cook and Kress, [1988)
and the geometric least square (Islei and Lockett], [198R).

Some considerations related to decision psychology and to the great number of pairwise comparison
judgments c,p,a,b € AR required by AHP to fill the matrix C suggested to consider only pairwise
comparisons with respect to the best and the worst alternatives originating the BWM (Rezaei, 2015).
A reduced number of pairwise comparison judgments is taken into account also in two recently pro-
posed procedures (Abastante et al., [2019; (Corrente et all, [2024) that correct the DM’s direct rating
of alternatives through the overall evaluations provided by AHP or BWM to a limited number of

reference alternatives.

Requiring preference information similar to AHP, MACBETH provides evaluations v(a),a € A, on an
interval scale. In particular, assuming that the DM retains b not preferred to a, MACBETH considers

pairwise comparisons ¢ a,b € A%, on a 0-6 scale, having the following interpretation:

a,b’

Op- a and b are equally preferable, denoted as C% =0,

1p- a is very weakly preferred to b, denoted as cg/[b =1,
2~ a is weakly preferred to b, denoted as c% =2,

3m- a is moderately preferred to b, denoted as C% =3,

4y~ a is strongly preferred to b, denoted as c% =4,

S5y~ a is very strongly preferred to b, denoted as c% =5,

6a/- a is extremely preferred to b, denoted as Cc% = 6.
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Below, we consider the following MACBETH-like LP problem to define the overall evaluations v(a),a €
AFR:

max -y, subject to,

v(a*) =100, v(as) =0 ) (7.1)
[v(a) — o™ (a) + o (a)] = [v(b) — o™ (b) + o (b)] =0 if cfl‘/{ =0,

W(a) — ot (a) + o ()] — [(b) — o+ (b) + o (b)] = 6., if cgl%b —e, e=1,...,6, }W’ € A" (7.2)
Oex1 —0e =27v,e=1,...,5, > B roct (7.3)
Z (6 (a) +0 (a)) <7, (7.4)
a€AR

ot (a) > 0,0 (a) > 0. (7.5)

/

The value of 7 is obtained solving the following auxiliary optimization problem

g=max Y (07(a) +0 (a)), subject to E}y,e (8)

where E';, ., is obtained by Ejprqeep replacing constraint (7.4]) with v > ¢; € is a small positive number
defined to ensure that - assumes a strictly positive value; a, and a® are the worst and the best

alternatives in A%, respectively.

Example 2.1 (continuation). Applying AHP, let us assume the pairwise comparisons cg, g,i,j =
1,2,3,4, shown in the following matriz:

Ri R Rs BRg

R /1 1 2 3
c_R| 1 1 2 2
T Rs|1/2 1/2 1 1

Rg\1/3 1/2 1 1

Solving problem (@) one obtains the normalized eigenvector v of C providing the following overall
evaluations for the regions Ry,Rp,R3 and Ra: ©(R1) = 0.36,7(Rp) = 0.33,0(R3) = 0.16,0(Re) = 0.15.

As AHP expresses overall evaluations v(Ri),i = 1,2,3,4, on a ratio scale, replacing them in the LP
4

problem (@) one gets the total error T = Z (6" (Ri) + 07 (Rs)) = 8.25 and the results listed in Table
i=1

[8 where k = 248.87 and the weights for the considered criteria are w; = 0.57,wy = 0.23, w3 = 0.2.

Table 8: Scores assigned to regions by the value function U(-) expressed on a ratio scale and obtained solving the LP problem
@) with respect to AHP overall evaluations v(R:),: = 1,2, 3, 4.

Regions U(-) v() k-v() ot() o ()

R4 90.31 0.36 90.31 0 0
Ro 81.15 0.32 81.15 0 0
Rs 40.58 0.16  40.58 0 0
Ry 28.59 0.15 36.83 0 8.25

Considering MACBETH and assuming that the pairwise comparisons C%Rj 4,5 =1,2,3,4 are collected
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as follows
Ri Ry Rs Ry

Re /0 1 4 5

M Ro 0 3 4
¢ ~ Rs 0 1
R4 1

solving sequentially problems (8) and (7) one obtains the following overall evaluations for regions
Ri,R2,R3 and Ra: v(Ry) = 100,v(Ra) = 80,v(Rs) = 20,v(Re) = 0. As MACBETH expresses overall

evaluations v(Ri),i = 1,2,3,4, on an interval scale, using them in the LP problem (2) where egs. (4)
4

are replaced by eqs. (A) one gets a null total error (Z (6" (Ri) +07(Ry)) = O) and the results listed
i=1

in Table [d where k = 0.607, h = 30, and the weights for the considered criteria are wy = 0.5, wy =

0.29,w3 =0.21. A

Table 9: Scores assigned to regions by the value function U(-) obtained solving the reformulation of LP problem () for interval
scales with respect to MACBETH overall evaluations v(Rs),i =1,2,3,4

Regions U(-) v() k-v()+h ot () o ()

R4 90.71 100 90.71 0 0
Ro 78.57 80 78.57 0 0
Rs 42.14 20 42.14 0 0
Ry 30 0 30.00 0 0
3. The number of cards ep,h = 0,...,s — 1 of the DCM can be interpreted in a more ordinal form in

the sense that instead of U(a) — U(b) = k- ey, for all a € Lypy1,b € Ly, we could consider the much
weaker relation for which if e;, > ep, h, B = 0,... s, then U(a)—U(b) = U(c)—U(d), for all a € Lp41,
b€ Ly, c€ Lpyq and d € Ly. Accepting this meaning of the blank cards, the regression problem ()

can be reformulated as follows:

max v subject to,

EModel \ (91)
U(a) > U(d') for alla € Lpy1,a" € Lp,h=0,...,5—1, (9.2)
U'(a) =U(a) — 0 (a) + 0 (a) for all a € AT, (9.3)
U'(a) = U'(b) =6y, foralla€ Ly and b€ Ly, h=0,...,5—1, B (9.4)
> Ordinal
(5h—(5h/>’yif€h>€h/, h,hlzo,...,s—l, (95)
> (0% (@) +0 (a) <T (9.6)
acAR
o (a) 20, 07 (a) >0 for all a € A%, J (9.7)
The value of & is obtained solving the following auxiliary LP problem
T = min Z (o (a) + 0~ (a)), subject to Ep,.ginal (10)
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where Ep, jina 1S obtained from Eorgina replacing constraints (9.5) and (9.6) with the following one
6h >5h’ ifeh Zeh/, h,h,:O,...,S—l.

Observe that the DM’s preference information could be collected also in terms of ratio instead of
difference between overall evaluations of alternatives, that is, if e, > ep,h,h/ = 0,...,s, then
U(a)/U(b) = U(c)/U(d), for all a € Lpy1, b € Ly, ¢ € Lpy1, d € Ly. This interpretation of the

meaning of blank cards requires the following reformulation of the regression problem:

max 7y, subject to,

EModel (111)
U(a) > U(d'), for alla € Lpyq,a € Ly, h=1,...,8 -1, (11.2)
U'(a) =U(a) — ot (a) + 0 (a) for all a € A%, (11.3)
U'(a)/U'(b) = ¢y, foralla € Lpyq and b€ Ly,h=1,...,8—1, (11.4)
. , >ERzztio
on/ow =vifen>en, hoh' =1,...,s—1, (11.5)
> (of(@)+07(a) <7 (11.6)
acAR
o =20,h=1,...,5s—1, (11.7)
o (a) >0, 0 (a) >0 for all a € A", ) (11.8)
The value of 7 is obtained solving the following auxiliary optimization problem
T = min Z (67 (a) + 0~ (a)), subject to, Erutio, (12)

where Ef, .., is obtained from ERrqyo replacing constraints (IL5) and (IT.6) with the following one
on = o ifen, >ep,h,h =1,...,s—1.

Even if the regression problem (II]) is generally not linear, it can be handled by means of the many
available nonlinear programming solvers. In the following, we shall refer to (Q) and (1] as difference-
based and ratio-based regression models, respectively. Observe that in regression problems (@) and
() one can consider information about intensity of preferences expressed in terms of the DCM, 1-9
AHP scale or 0-6 MACBETH scale. However, we could consider information expressed in terms of
intensity of preference of a merely ordinal type such as “a is preferred to b at least as strongly as c is
preferred to d”, without considering the predetermined scale expressed in terms of cards, 1-9 AHP scale
or 0-6 MACBETH scale. This type of preference information has been discussed in ordinal regression
and ROR in [Figueira et al. (2009).

Example 2.1 (continuation). Applying the difference-based LP regression model (9) to the preference
information over regions Ry, i = 1,...,4, collected through the DCM and considering a value function
expressed in terms of a weighted sum, we get &1 = d3 = 30 and 69 = 04 = 13.75. Reminding that

e1 =e3 =5 and ex = e4 = 2, this means that five and two blank cards have a value of 30 and 13.75,
respectively. Solving the difference-based LP regression model [9) one gets a null total sum of the errors
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(6 = 0) and the following weights of criteria wi = 0.5,wy = 0.125, w3 = 0.375, so that, the overall
evaluations of regions are obtained as listed in Table [I0.

Table 10: Scores assigned to regions by the value function Table 11: Scores assigned to regions by the value function
U () obtained solving the difference-based LP problem (@) U(-) obtained solving the ratio-based regr. problem (I
Regions  U() U'() a*() o () Regions  U() U'() a*() o ()

Ry 87.5 875 R4 94.37  94.37

Ro 71.08 71.03
R3 47.55  47.55
Ry 35.79  85.79

0
Ro 73.95 1875 0
Rs 4375 43.75 0
Re  50.00 30.00 0

Applying the ratio-based model (I1]), one gets p1 = w3 = 1.49 and 62 = §4 = 1.33 with v = 1.12.
Reminding that e; = e3 = 5 and e = e4 = 2, this means that five and two blank cards correspond to
a ratio 1.33 and 1.12, respectively. Solving the ratio-based regression model (I1]) one gets a null total
sum of the errors (@ = 0) and the following weights of criteria wy = 0.21,we = 0.61,w3 = 0.18, so
that, the overall evaluations of regions are obtained as listed in Table 1. W

In the following, we will refer to the standard regression problem (II) based on the DCM. Of course, any

extension we propose in the next sections can be generalized to the other regression models discussed above.

3. A more robust and richer DOR

In this section, we shall extend the DOR approach described in the previous section aiming to provide
more robust recommendations on the considered problem and to take into account hierarchical structures

of criteria.

3.1. Robust Ordinal Regression

Solving the LP problems () and () one finds a value function U that is compatible or deviates as little
as possible from the DM’s preferences. However, taking into account robustness concerns, it is reasonable
to consider other value functions close to U obtained by some perturbation of its parameters. In this
perspective, we shall consider compatible with the DM’s preferences any value function U satisfying the
constraints EPM' (with k > 0), so that, it is reasonable taking into account all of them. With this aim we
apply the ROR (Greco et all, [2008; [Corrente et all, 2013), defining a necessary and a possible preference
relation on the set of alternatives A. Given a;j,,a;, € A, on the one hand, a;, is necessarily (weakly) preferred
to aj,, denoted by a;, = aj,, if a;, is at least as good as aj, for all compatible value functions, while, on
the other hand, a;, is possibly (weakly) preferred to aj,, denoted by aj, il aj,, if aj, is at least as good as
a;, for at least one compatible value function.
To compute the necessary and possible preference relations, the following LP problems need to be solved

for each pair of alternatives (a;,,aj,) € A x A:

eP(aj,,a;,) = maxe, subject to eN(aj,,a;,) = maxe, subject to
U(ajl) > U(aj2)7 P (13) U(ajz) > U(ajl) + &, N (14)
EDMN E (Cle, aj2) EDMN E (Cle, ajz)

where EPM s obtained by EPM replacing k > 0 with k > e. In particular:

Case P1) E”(aj,,a;,) is infeasible or £¥'(a;,,a;,) < 0: then, there is not any compatible value function for

which Uf(aj,) = Ul(a;,). Consequently, not(aj, 5F aj,) (implying that aj, = aj,),

14



Case P2) E?(aj,,a;,) is feasible and € (aj,,a;,) > 0: then, there is at least one compatible value function
such that U(aj,) > Ul(aj,) and, therefore, aj, =7 aj,;

Case N1) E%¥(aj,,a;,) is infeasible or £V (aj,,a;,) < 0: then, there is not any compatible value function
for which U(aj,) > U(aj,). Therefore, aj, =N aj,,

~

Case N2) E(aj,,aj,) is feasible and £V (a;,, a;,) > 0, then, there is at least one compatible value function

for which U(a;,) > U(aj,). Therefore, not(aj, ==V a;,) (implying that a;, = a;,).

3.2. Stochastic Multicriteria Acceptability Analysis
Even if in a different way in comparison with the ROR, the SMAA (Lahdelma et al.,[1998; Pelissari et all,

2020) provides recommendations on the alternatives at hand considering the whole space of compatible value
functions.

SMAA gives information in statistical terms based on a set of compatible value functions sampled from the
simplex defined by constraints in EPM”. Because all the above constraints are linear, one can efficiently
perform the sampling using the Hit-And-Run (HAR) method (Smith, 1984; [Van Valkenhoef et all, 2014).
In our context, for each sampled value function, a ranking of the alternatives in A can be obtained. Based

on these rankings, SMAA provides the following indices:

e Rank Acceptability Index (RAI), b¥(a): it is the frequency with which a € A isin place v, v =1,...,|A|,

in the considered rankings,
o Pairwise Winning Index (PWI), p(a;,,aj,): it is the frequency with which a;, is preferred to a,.

Even if RAIs provide more robust information on the considered problem, in general, they do not give
a total ranking of the alternatives under consideration. To overcome this problem, two different procedures

can be used:

e Computing the expected ranking of each alternative: Following [Lahdelma and Salminen (2001), each

a € A can be associated to a value EFR(a) being the weighted average of its RAIs. Formally,
|A]

ER(a) = Zv -b” (a). On the basis of FR(a), one can obtain a complete ranking of the alter-
v=1

natives in A so that, for each a,b € A, a is ranked not worse than b if ER(a) < ER(b);

o Computing the ranking obtained by the barycenter of the compatible space: As mentioned earlier, the
SMAA indices are calculated by considering the rankings of the alternatives, which are determined by
using each value function sampled from the space defined by constraints in EPM”. The value function
obtained by averaging the sampled value functions has been proved to be able to well represent the
preferences of the DM (Arcidiacono et all,[2023). Therefore, one can use this compatible value function,
which represents an approximation of the barycenter of the space defined by constraints in EPM ", to

rank the alternatives at hand.

3.8. Multiple Criteria Hierarchy Process

In real-world decision making problems criteria are generally structured in a hierarchical way. It is
possible to consider a root criterion (the objective of the problem), and some macro-criteria descending
from it until the elementary criteria placed at the bottom of the hierarchy and on which the alternatives are
evaluated. The Multiple Criteria Hierarchy Process (MCHP |Corrente et al.[2012) can then be used to deal
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with such problems. It permits to take into account the preferences of the DM at both partial and global
levels as well as providing recommendations globally and partially.
According to the MCHP framework, in the following, g, will be a generic criterion in the hierarchy, while
by gr = go we refer to the whole set of criteria; I is the set of the indices of all criteria in the hierarchy;
EL C Ig is the set of the indices of elementary criteria, while, E(g,) C EL is the set of indices of the
elementary criteria descending from g,; the value of an alternative a on criterion g, will be denoted by
Uy (a), while the global value of a will be denoted by Ug(a). The value of a on macro-criterion g, that is,
Ur(a) will depend only on its performance on the elementary criteria descending from it. Of course, the
definition of U, will change according to the type of function used to represent the DM’s preferences (see
Append A)).

Extending our proposal described in Section 2l to the MCHP framework, the DM is therefore asked (but
they are not obliged) to apply the DCM for each macro-criterion g, following these steps:

1. Rank-ordering the alternatives from the less preferred to the most preferred with respect to criterion g,
in sets Ly 1y, L(r2)s - - s Lr,s(r))- That is, alternatives in L. 541y are preferred to alternatives in L, p)
on gr for all h =1,...,s(r) — 1 and alternatives in L(, 5 are indifferent on gy, for all h =1,..., s(r);

2. Putting a certain number of blank cards e, ) between sets L, ) and Ly 41 to increase the difference
between the value on g, of the alternatives in Ly j,41) and the value on g, of the alternatives in L, p);

3. Providing the number of blank cards e(; o) between the “fictitious zero alternative on g.” and the
alternatives in L 1). In this case fictitious zero alternative on gr is a fictitious alternative ag having
a null value on g, (Ur(ag) = 0);

4. Each alternative a € A® is assigned a value v(a) for each macro-criterion g, such that if a € Lrn+1)
and @’ € L py, ve(a) = ve(@') 4+ (eny +1), h=1,...,5(r) =1 and if a € L, 1) then vr(a) = ey ) + 1.

h—1
Consequently, for a € L, 5y, we have: vr(a) = Z (e(r,p) + 1) ;
p=0

5. The parameters of the value function U are determined in a way that for all a € A and all g,, Uy(a)
deviates as less as possible from k; - vr(a) with k, a scalarizing constant that can be interpreted as
the value of a single blank card w.r.t. macro-criterion g,. More precisely, for all a € A® and all
macro-criteria gy, one considers the positive and negative deviations o} (a) and o, (a) between Uy (a)

and ky - vp(a), that is Up(a) — of (a) + oy (a) = ky - r(a).

The preference information the DM provides on macro-criterion g, through the DCM can be translated into

the following set of constraints
Ur(a) = Up(d'), for all a,a’ € AR, such that vp(a) > vi(a'),
a) — o (a) + oy (a) = ky - vi(a) for all a € AR,

ke 20,

of(a) >0, o7 (a) =0 for all a € AF,

where:

e Up(a) is the value assigned by U to alternative a w.r.t. macro-criterion g,. The formalization of U,
depends on the type of value function U used to approximate the preferences of the DM (see Section

Append Al),
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e k. is the value of a blank card on gy,

e 0, (a) and o, (a) are over and under estimations related to a and gy.

To check a function U compatible with the DM’s preferences and presenting the minimum error, one has to

solve the following problem:

OMCeHP = Mmin Z Z (o7 (a) + o7 (a)), subject to,

relg\ELacAR
M
E odel,
EDM
MCHP
Urcro\ELEr-

To ensure that the value of each blank card k, is greater than zero one has to solve iteratively the following

LP problem:
€y copp = maxe, subject to,

E]DWACJHP’ DM (15)
_ _ _ E
> > (of(a) + o7 (a)) <Tumcup + 1 (@Fmcup), MCOHP
relg\EL acAR

where E]DV[ACJH p is obtained by EA[Z,%[ mp replacing the constraints k. > 0 (one in each E;) with &, > ¢ and
N (@mcmp) is an admitted deterioration error with respect to the optimal value obtained in the previous
step, that is, Ty cmp. At the beginning, n (Gycrp) = 0. However, if €,o5p = 0, then, one has to increase
n(@mcup) (as suggested in Section 2)) until €3;-4p > 0.

Let us observe that, differently from LP problem (B]) where we have maximized directly the value of the
unique blank card k, here, we have replaced k, > 0 with k, > € and, then, we have maximized € to ensure
that if €};0p > 0 then all £, are greater than zero.

To conclude this section, let us observe the following:

e The DM is not obliged to provide the preference information on all macro-criteria in the hierarchy but
only on those they are more confident. Moreover, some information can also be imprecisely given (see

Section M),

e ROR can be applied in the MCHP context. In particular, to check if a;, =L aj, (aj, is possibly
preferred to a;, on gr) or aj, =& aj, (aj, is necessarily preferred to a;, on g.), one has to solve the

following two LP problems:

el(aj,,a;,) = maxe, subject to eN(aj,,a;,) = maxe, subject to

Ul‘(ajl) > Ul‘(an)’ b, (16) Ul‘(an) > Ul‘(ajl) +é, N (17)
DM// Er ((Ijl,(le) DM// Er ((Ijl,(le)

Eyicup: Eyicup

As commented in Section B.1]

P ix P : : P :
— aj, Zy aj, iff E{ (aj,,a;,) is feasible and e, (a;,,aj,) > 0;

N . i N o : N :
— aj, Ty aj, iff E;¥(aj,,a;,) is infeasible or €, (a;,,a;,) < 0;

~r

e SMAA can be applied in the MCHP context on the basis of a sampling of value functions from
the simplex defined by constraints in Eﬁng p- For each sampled value function, a ranking of the
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alternatives at hand can be done on each macro-criterion gy, r € I \ EL. Consequently, the RAIs

and PWIs defined in Section can be computed for each macro-criterion gy:

— bY(a): it is the frequency with which alternative a € A is in place v, v = 1,...,|A], in the rankings

produced on gy,

— pr(aj,, aj,): it is the frequency with which a;, is preferred to aj, on gy.

Analogously, the expected ranking of each alternative a on g, (E'Ry(a;)) as well as the ranking obtained

using the approximation of the barycenter of the space defined by constraints in Eﬁ]g},{P can be
|A]

computed. Formally, for each gy, r € I\ EL, ERy(a) = Z v-bY(a).
v=1

4. Providing imprecise information

In this section, we shall extend the proposal described in Section 2l We shall consider the case in
which the DM is not able to precisely provide the number of blank cards between two successive subsets of

alternatives Ly and Lp,q, with h=1,...,5 — 1.

4.1. Interval information

Let us assume that the DM can define the minimum (eﬁ ) and the maximum (eg) number of blank cards

to be included between sets Lj and Lp1q. Formally, this means that the number of blank cards e; between
the two subsets of alternatives is such that e € [eﬁ, eg] forall h =0,...,s— 1. To infer a value function U
able to represent the DM’s preference information expressed by the use of the “imprecise” DCM, one has

to solve the following LP problem:

O Interval = Min Z (0'+((1) +o ((1)), subject to

acAR
EModel
U(a) > U(d), for all a € Ly,a’ € Ly, such that h > b/, h, 0/ =1,...,s
U(a) —o*(a) + 0~ (a) = U(a) for all a € AR
k>0 DM
Interval

ot(a) >0, 0 (a) =0 for alla € AR

v(a) = 0(d') + (ek +1) - k,
foralla € Lyyq,d € Ly, h=0,...,58—1,

v(a) < D(a') + (eY +1) -k,
where:
o EModel is the set of monotonicity and normalization constraints related to the considered preference

function U (see Appendic A):

e U(a) > U(d') imposes that, following the ranking given by the DM, if a € Ly, and a’ € Ly such that
h > h', the value of a is not lower than the value of a’. Observe that this constraint implies that
U (a) = U (d’) in case both of them belong to the same level Ly, with h =1,...s;
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e U(a)—ot(a)+0 (a) =v(a) imposes that the value of a (that is U(a)) is equal to 7(a) being implicitly
given by the product between the value of a blank card (k) and the number of levels up to alternative
a (v(a)), that is v(a) = k - v(a);

e k > 0 is the value of a single blank card;

e 0 (a) > 0,07 (a) > 0 impose that the slack variables, representing overestimation and underestimation

of U(a), respectively, are not negative;

e constraints U(a) > D(a’) + (eX + 1) - k and D(a) < U(a’) + (¥ + 1) - k link the values assigned by the
DCM to alternatives a and o’ taking into account the interval [eﬁ , eg] of the possible values of the

blank card e; put between two contiguous levels Ly, and Lj4+1, h=0,...,s — 1. Indeed,
er <ep<en=(ef+1)<(en+1)<(eff +1) = (ef +1) k< (ep+1) k< (ef +1) k=

=)+ (e +1) - k<V(a)+ (en+1)- k<D (d) + (ef +1) k.

(a)

Following the description given in Section [2] the value of the blank card k has to be greater than zero. To

maximize it, one has to solve the following LP problem

N _ .
€T nterval = Max e, subject to,

DM’
Elnterval ’ (18)

Z (0+ (a) +o ((I)) < OInterval + 1 (Elnterval)
ac AR

where Eﬂ%;val is obtained by Eﬁ%rml replacing the constraint k& > 0 with k& > ¢ and 7 (Grptervar) 18
an admitted deterioration error with respect to the optimal value obtained in the previous step, that is,
T Interval- At the beginning, 7 (Frptervar) = 0. However, if €7, ,.,..,; = 0, then, one has to increase 1 (Grnterval)
(as suggested in Section B)) until €7,,.,., > 0. Notice that from a computational point of view, comparing

the LP problems (I8)) and (3], maximizing ¢ in (I8)) is equivalent to maximize k in (3).

4.2. Imprecise or missing information

In some situations, the DM could not be able to specify the lower or the upper bounds of e, that

is, eﬁ or e}[{. Summarizing, considering the number of blank cards e; between levels L; and Lp4q, with

h=1,...,s—1, five different cases can be observed and each of them is translated into a few linear equalities

or inequalities:
A) The DM can precisely assign a number to e, that is, e, € N*. In this case,

U(a)=v(a")+ (e, + 1)k, for all a € Lyy1,a’ € Ly,

B) The DM can define the lower eﬁ and the upper eg bound of e, that is, ep € [eﬁ, e,[{]. In this case:

v(a) 2 v(a) + (ef +1) - k,
for alla € Lj,1,d" € Ly,.
v(a) <D(a)+ (e +1) -k
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C) The DM can define only the lower bound eﬁ of ey, that is, ep, € [eﬁ, ?]. In this case:

v(a) > v(d) + (e}LL +1) -k, for all a € Ly41,d" € Ly,

D) The DM can define only the upper bound eg of ey, that is, e, € [?, e}[{]. In this case:

for alla € Lj,,1,d" € Ly,.

E) The DM can define neither the lower bound eﬁ nor the upper bound eg of ey, that is, e, € [7,7]. In this
case:
v(a) 2 v(d') + k, for alla € Lpyq,a" € Ly,.

Taking into account all these different cases, to check for a value function compatible with the possible

imprecise preference information provided by the DM, one has to solve the following LP problem:

O Imprecise = min Z (0'+(a) +o~ ((1)), subject to
ac Al

U(a) > U(d'), witha € Ly,a’ € Ly, such that h > b/, h,h' =1,... s —1,

U(a) — ot (a) + o~ (a) = U(a) for all a € A,

k>0,

ot(a) 20, 07 (a) = 0for alla € A",

via)=v(d)+ (en +1) -k if e, € N¥

ﬁ(a) > ﬁ(a’) + (E}LL/ + 1) -k EIDm]\grecise
if ey € [eﬁ,eg]

v(a) < D)+ (e +1) -k

v(a) 2 0(d)+ (el +1) -k if ep e [ef,?] for all a € Lyy1,d € Ly,

v(a) =2 v(d)+k

R ., o7 if e, e [?, eg]

v(a) <v(a)+ (e +1) -k

v(a) =2 v(d)+Ek if e, el?,7]

To ensure that the value of the blank card k is greater than zero, one has to solve the following LP problem

* J— .
EImprecise — MAXE, subject to,
DM’
EImprecise’
E + - = _ EDM"
(U (a) + g (a’)) g UImprecise + T, (O-Imprecige) Impreczse
acAR
where EPM' i obtained by EPM . replacing the constraint k > 0 with k > ¢ and G ve)
Imprecise y Imprecise P g = > n Imprecise

is an admitted deterioration error with respect to the optimal value obtained in the previous step, that
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iS, Trmprecise- At the beginning, 7 (T rmprecise) = 0. However, if E?mprem-se = 0, then, one has to increase

7 (T Imprecise) (as suggested in Section [2]) until

> 0.

*
6Imprecise

4.8. ROR, SMAA and hierarchy of criteria in presence of imprecise information

The imprecision information described in the previous section can also be taken into account in the ROR

and SMAA as well as in case the problem presents criteria structured in a hierarchical way and dealt with

by the MCHP:

e Regarding the ROR and, for each (aj,,a;,) € A x A, to check if a;, =T aj, and if aj, =V

aj, one has

to solve the LP problems (I3) and (I4)), respectively, replacing EPM" with EPM”

Imprecise’

e Regarding the SMAA, the sampling of compatible value functions has to be done from the simplex

defined by constraints in F

DM//
Imprecise’

e Regarding the MCHP, reminding that for each macro-criterion g, r € I \ EL, €(r,n) is the number
of blank cards between the sets of reference alternatives Ly py and L j41) and that the number of
subsets in which reference alternatives are ordered w.r.t. this criterion is denoted by s(r) (see Section
B.3), we assume that the DM can provide information on the lower eéﬁh or upper e? n) bounds of

r,

€(r,n)- Of course, all the imprecise information presented in Section can also be taken into account
in the MCHP with the corresponding constraints translating them. For each macro-criterion g, one
needs to define the following set of constraints

Up(a) = Up(a), for alla € Ly, a’ € Ly such that h > b/, h, b/ =1,... s,

Ur(a) — of(a) + o7 (a) = Dr(a) for alla € AR,

ke 20,

of(a) 20, o7 (a) = 0for alla € AR,

Ur(a) =e(a') + (e(ryh) + 1) K, if ewn) € N7,

Ue(a) = Up(d) + (e(Lr_’h) + 1) - ky _ .
if e, € e(Lr,h)v e(r,h)} pymerectse

De(@) <Pe(@’) + (el +1) - he :

Ue(a) = De(ad’) + (e@h) + 1) Ky if eqn € _eé)h)a ?} for all a,a’ € AR,

vr(a) 2 e(a’) + ko, oy

Ue(a) < Te(a’) + (e + 1) ke it ewn € |7 8<r,h>}

Ur(a) = vp(a’) + ky if ewn €[7,7]

The existence of a value function compatible with the imprecise information provided by the DM is

checked solving the following LP problem:

Fadnet =min Y Y (o (a) + oy (a)) subject to,

relg\EL ac AR
EModel (19)
’ Elmprecise
U EImprecise MCHP
relg\EL r :

To ensure that the value of each blank card k, is greater than zero, one has to solve the following LP
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problem

*,Imprecise

ENICEP = maxe, subject to,
Elm;m"ecise/
MCHP ° o (20)
i 1 Evlrip™
+ — — mp?“eczse — mpreczse
Z Z (07 (@) +op (@) <Tpiéup "‘77( TMCHP )
relg\EL ac AR

where Eﬁggﬁse is obtained by E]I\?gggse replacing k. > 0 with k. > ¢ in each set of constraints

I i I . . . . . .
PP and n (@ A;[ng;;ffse> is an admitted deterioration error with respect to the optimal value

obtained in the previous step, that is, Eﬁné’;fgse. At the beginning, 7 (aﬁng;;gse> = 0. How-

. *,Imprecise __ . Imprecise . . .
ever, if €;opp = 0, then, one has to increase n (O'MCHP > (as suggested in Section 2]) until

*,I'mprecise
encup > 0

To apply ROR and SMAA in this context is therefore necessary to proceed in the following way. For

each macro-criterion gy, r € Ig \ EL,

— for each (aj,,aj,) € A x A, to check if aj, =F a;, and if aj, = aj, one has to solve the LP

~r ~r

Impreczse

problems (I6]) and (I7), respectively, replacing EMCH p with By Ay
— the sampling on which the SMAA indices computation is based, has to be performed from the

simplex defined by constraints in Eﬁg’;ﬁse

5. Didactic Example

In this section, we shall show how the proposed methodology could be applied in a real-world problem re-
lated to a large ongoing research project (https://grins.it/; https://dse.unibo.it /en /university-outreach /next-generation-e
Let us assume that the DM wants to rank Italian Regions according to three main macro-criteria, being
Circular Economy (g1 ), Innovation-Driven Development (g2) and Smart Specialization Strategies (g3). Each
of these macro-criteria is then articulated in several elementary criteria which are shown in Table All
elementary criteria have an increasing direction of preference (+) except “Urban Waste Generation” which
has a decreasing direction of preference (—). Before applying our proposal, the data are normalized using
the procedure described in |Greco et al) (20194). Normalized data are shown in Table [I3]

In Section B.II we shall describe the application of the new framework in case the DM, for example a
policy maker, wants to evaluate the regions on Smart Specialization only and they are able to give precise
information. In Section [5.2] instead, we shall show the results of the application of the method in case the
DM wants to rank the regions considering the whole set of criteria and they are not able to provide precise

information both at global and partial levels.

5.1. Basic Framework

At first, let us assume the DM wants to evaluate the Regions only according to the Smart Specialization
macro-criterion and that they can express their preferences about 5 regions only, namely A® = {Veneto,
Friuli-Venezia Giulia, Marche, Liguria, Mohse} = {af, alt, af, al’, af*} articulated as shown in Table[d. To
avoid any confusion, we denoted by al yens ,a5 the reference regions and we added in the first column the
ID of the same alternative in Table Moreover, in all tables regarding the whole set of regions, we put in

bold the data corresponding to the reference regions.
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Table 12: Regions’ performances on elementary criteria divided in three Macro-Criteria: Circular Economy (g1), Innovation-Driven Development (g2), Smart Specialization (gs3)

Circular Economy - g(1)

Innovation-Driven Development - g(2)

Smart Specialization - g(s)

Percentage  of Number of
Urban Research and Patents 8" Number of Percentage value added Smart spec1f11-
Renewable | Development istered at . ized companies
Waste . . .. companies | of Smart by Smart . .
Differentiated  electricity | Personnel the European . - with high
Gener- . with ISO | spe- specialised . .
. - waste col- (per- (full-time Patent  Office - . intensity of
ID Region ation . . 14001 cer- | cialized companies to .
. lection (%) centage) equivalents (EPO) (number . . investments
(kg/capita) s tification companies  the total value | .
(2017) (g1,2y) (2017) per  thousand per million . in social and
(2017) ’ . . . . (2017) (2018) added in the .
( ) (91,3)) inhabitants) inhabitants) ( ) ( ) . (2018) environmental
ga.n (2017) (gz1))  (2012) (gz2)) V29 9@ Eeglon) responsibility
. (2018) (gs.3)
1 Piedmont 470.69 59.25 35.5 7.04 90.97 1563 32.9 65.5 1040
2 lt;’m Val- | g0 58 61.14 243.5 3.11 51.09 102 26.1 49.5 31
3 Liguria 531.68 48.81 7.3 5.02 56.67 672 29.2 49.2 522
4  Lombardy | 467.25 69.61 21.7 6.57 92.35 3581 32.8 62.4 2637
Trentino-
5 South 487.24 71.58 116.7 6.35 88.17 524 30.7 55 248
Tyrol
6 Veneto 475.88 73.65 21.3 6.62 100.96 2105 35.6 61 1065
Friuli-
7  Venezia 484.11 65.48 23.3 6.73 216.43 585 34.9 63.9 250
Giulia
g Lmilia- 642.54 63.83 19.2 9.49 131.52 1898 33.5 64.7 999
Romagna
9  Tuscany 600 53.88 39.2 6.06 63.97 1403 30.5 60.2 1138
10  Umbria 508.39 61.69 37.2 4.4 33.04 395 33.2 51.9 230
11 Marche 532.27 63.25 27 5.29 58.18 586 32.6 58.2 331
12 Lazio 503.97 45.52 13.2 6.51 23 1430 30.7 67 1046
13 Abruzzo 452.52 55.99 44.6 3.46 19.2 488 32.9 53.1 258
14 Molise 376.96 30.72 84.4 3.37 2.93 101 34.5 49.6 71
15 Campania | 439.06 52.76 26.4 3.28 9.64 1158 32.7 54.4 1244
16 Apulia 462.6 40.44 52.5 2.36 9.43 815 35.5 54.7 742
17 Basilicata 345.17 45.29 90.1 2.35 10.29 238 36.1 61.9 152
18 Calabria 394.61 39.67 72.6 1.8 9.13 325 38.2 50.4 487
19  Sicily 456.01 21.69 25.1 1.84 4.33 780 33.5 50.2 792
20 Sardinia 438.29 63.05 36 2.36 5.64 300 31.1 45.5 309




Ve

Table 13: Normalized performances. (+) and (—) denote elementary criteria having a positive or negative direction of preference, respectively.

Circular Economy - g1

Innovation-Driven Development - g2

Smart Specialization - g3

Research  and

Patents reg-

Percentage  of

Number of
Smart special-

Urban Renewable Development istered at  Number of | Percentage value added ized companies
Waste Differentiated lectricit Personnel the FEuropean companies | of Smart by Smart  with high
Gener- waste col- Secmaty (full-time Patent  Office with ISO | spe- specialised intensity of
ID Region ation lection (%) (pez- equivalents (EPO) (number 14001 cer- | cialized companies to investments
(kg/capita) (2017) (+) ((;331%6@) per  thousand per million tification companies  the total value in social and
(2017) (-) (9a,2)) inhabitants) inhabitants) (2017) (+) | (2018) (+) added in the environmental
(9(1,1)) (92.3)) (2017) (+)  (2012) (+) (92,3) (93,1)) region  (2018)  responsibil-
(9¢2.1)) (9(2.2)) (+) (93.2)) ity (2018)(+)
(9(3,3))
1  Piedmont | 0.53 0.56 0.45 0.68 0.62 0.62 0.5 0.74 0.6
2 lt;’m Val- | 96 0.58 1 0.37 0.49 0.33 0.07 0.32 0.32
3 Liguria 0.38 0.43 0.36 0.52 0.51 0.44 0.27 0.31 0.46
4  Lombardy | 0.54 0.69 04 0.65 0.62 1 0.5 0.66 1
Trentino-
5  South 0.49 0.71 0.71 0.63 0.61 0.41 0.36 0.46 0.38
Tyrol
6 Veneto 0.52 0.74 0.4 0.65 0.65 0.73 0.67 0.62 0.61
Friuli-
7  Venezia 0.5 0.64 0.41 0.66 1 0.43 0.63 0.7 0.38
Giulia
g Lmilia- 0.12 0.62 0.4 0.88 0.74 0.69 0.54 0.72 0.59
Romagna
9  Tuscany 0.22 0.49 0.46 0.61 0.53 0.59 0.35 0.6 0.63
10  Umbria 0.44 0.59 0.45 0.48 0.43 0.39 0.52 0.38 0.37
11 Marche 0.38 0.61 0.42 0.55 0.51 0.43 0.48 0.55 0.4
12 Lazio 0.45 0.39 0.38 0.64 0.4 0.6 0.36 0.78 0.6
13 Abruzzo 0.57 0.52 0.48 0.4 0.39 0.41 0.5 0.41 0.38
14 Molise 0.75 0.21 0.6 0.4 0.34 0.33 0.6 0.32 0.33
15 Campania | 0.6 0.48 0.42 0.39 0.36 0.54 0.49 0.45 0.66
16 Apulia 0.55 0.33 0.5 0.31 0.36 0.47 0.67 0.45 0.52
17 Basilicata 0.82 0.39 0.62 0.31 0.36 0.36 0.71 0.64 0.35
18 Calabria 0.71 0.32 0.57 0.27 0.36 0.37 0.84 0.34 0.45
19  Sicily 0.56 0.1 0.41 0.27 0.34 0.47 0.54 0.34 0.53
20 Sardinia 0.6 0.61 0.45 0.32 0.35 0.37 0.39 0.21 0.4




Table 14: DM’s preferences

ID Region Level

6 Veneto v(afl) = 65
6(374) =38

7  Friuli-Venezia Giulia v(af) = 56
6(3’3) =6

11 Marche v(all) = 49
6(372) =5

3 Liguria v(af) = 43
6(3’1) =5

14 Molise v(aft) =37
6(370) =36

Table 15: Basic Framework - Parameters’ values obtained solving the LP problem () assuming the weighted sum as preference
model

— + — + — + — + - +
w(3,1) Ws2) W) K 93,5 93,5 93,4 934 933 93,3 9362 932 9361 961

0.099 041 0492 0.01 O 0 0 0 0002 O 0 0032 0 0 0.035

Following the description in Section 2, according to the provided information, Molise is the worst among
the five reference regions, while Liguria is the best among them. Moreover, 36 (6(3,0))) blank cards are
included between the “fictitious zero alternative” and Molise, 5 (e(s,;)) blank cards between Molise and
Liguria and so on. Solving the LP problem (II) and considering the Weighted Sum as preference model we
get the parameters shown in Table

As one can see, the LP problem is not able to capture the DM’s preferences without any estimation
errors since ¢ = 0.035. For such a reason, we try to represent the same preferences using the 2-additive
Choquet integral. Solving the same LP problem, we get that the Choquet integral is able to represent the
DM'’s preferences without any errors since @ = 0. At this point, we solve the LP problem (3)) to maximize
the value of the blank card obtaining the Mobius parameters shown in Table

As described in Section Bl to get more robust recommendations on the considered problem, we can
compute the possible and necessary preference relations which are shown in Tables [I7] and [I8], respectively.
Referring to Table [T entry 1 means that the region in the row is possibly preferred to the region in the
column, while entry 0 means that the region in the row is not possibly preferred to the region in the column
(analogous interpretations can be given to the entries in Table[I8]). Looking at the two preference relations,

it is possible to state that:

Table 16: Basic Framework - Parameters’ values obtained solving the LP problem (3]) assuming the 2-additive Choquet integral
as preference model

m({g}) m({g2}) mgs}) m{g1,92}) m{g1,93}) m({g2,93) k @
0.0953  0.3561  0.7061 0.0712 -0.0953 01334 0.0095 0
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Table 17: Basic Framework - Possible preference relation between regions on Smart Specialization

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 111 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 0 1 0 0 0o 0 0 0 0 O 0 0 0 0 0 0 0 0 0 0
3 0 1.1 0 1 0 O O O 1 0 0 1 1 0 0 0 0 0 1
4 1.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 0 1 0 0 1 0 0O 0 0 1 0 0 1 1 0 0 0 0 0 1
6 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
v 0 1 1 0 1 0 1 0 O 1 1 0 1 1 0 1 1 1 1 1
&§ 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9 0 1 1 0 1 O 1 0 1 1 1 0 1 1 1 1 1 1 1 1
0 0 1 0 0 O O O O 0 1 0 0 0 1 0 0 0 0 0 1
1 0 1.1 0 1 0 O O O 1 1 0 1 1 0 0 0 1 0 1
2 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 0 1 0 0 1 O O O O 1 0 0 1 1 0 0 0 0 0 1
4 0 1 0 0 0 O O O O o 0 0 0 1 0 0 0 0 0 1
5 0 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1
6 0 1 1 0 1 O 0 0 0 1 1 0 1 1 0 1 1 1 1 1
70 1 1 0 1 0 0 0 0 1 1 0 1 1 0 0 1 1 1 1
¥ 0 1 1 0 1 O O 0 0 1 1 0 1 1 0 0 0 1 0 1
9 0 1 1 0 1 O O O O 1 1 0 1 1 0 0 1 1 1 1
20 0 1 0 0 0 0 O 0 0 O 0 0 0 1 0 0 0 0 0 1

e Lombardy (ID = 4) is necessarily preferred to all regions and, therefore, it can be considered the best

among them;

e Piedmont (ID = 1), can be considered the third region since it is necessarily preferred to all regions
apart from Lombardy and Lazio (/D = 12); Emilia-Romagna (ID = 8) is necessarily preferred to all
regions apart from Piedmont, Lombardy and Lazio, while Lazio is necessarily preferred to all regions

apart from Piedmont, Lombardy, Emilia-Romagna, Veneto (ID = 8) and Campania (ID = 15);

e Aosta Valley (ID = 2), is the worst region since it is not possibly preferred to any region (apart from
itself);

e Molise (ID = 14) is possibly preferred to Aosta Valley and Sardinia (I D = 20), only, and, analogously,
Sardinia is possibly preferred to Aosta Valley and Molise only.

Since there is often no clear preference between many pairs of alternatives, we chose to use the SMAA as
described in Section 3221 The SMAA application is based on a sampling of 1 million compatible measures
computing, therefore, the RAIs and the PWIs shown in Tables [[9 and 20, respectively.  Analyzing these

indices, it is possible to notice that:

e Aosta Valley (ID = 2) is always ranked last (b3°(ag) = 100%) while Lombardy (ID = 4) is always
ranked first (b3(as) = 100%);

e Second to last and third to last positions are taken by Molise (ID = 14) and Sardinia (/D = 20). In
particular, Molise is most frequently in the second to last position (b1(a14) = 72.13%), while, Sardinia

is in the third to last position with the same frequency (b3 (asz) = 72.13%);

e Piedmont (ID = 1) is always in the second and third positions (b3(a1) = 79.75% and b3 (a1) = 20.25%),
Emilia-Romagna (ID = 8) fills the third or the fourth position in the whole ranking (b3 (as) = 50.96%
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Table 18: Basic Framework - Necessary preference relation between regions on Smart Specialization

1 12 13 14 15 16 17 18 19 20

10

ID

0O 0 0 0 1

1

10
11

0 0 0 0 1

1

12
13
14
15
16
17
18
19
20

0O 0 0 0 0 0 O

0

1

Table 19: Basic Framework - Rank Acceptability Indices (RAIs) on Smart Specialization
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Table 20: Basic Framework - Pairwise Winning Indices (PWIs) on Smart Specialization

ID| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 0 100 100 0 100 100 100 100 100 100 100 79.75 100 100 100 100 100 100 100 100
21 0 0 00 O 0 0 0 0O 0 O 0 0 0 0 0 O 0 0 0
3/ 0 100 0 0100 0 o0 O 0 100 O 0 100 100 O O O 0 0 100
41100 100 100 0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
5/ 0 100 0 0 O 0 0 0 0 100 O 0 4494 100 O 0 O 0 0 100
6/ 0 1001000 100 O 100 O 100 100 100 32.44 100 100 100 100100 100 100 100
7| 0 1001000 100 O O O 0 100 100 O 100 100 O 100100 100 100 100
8| 0 100 100 0 100 100 100 O 100 100 100 50.96 100 100 100 100 100 100 100 100
9 0 100 1000 100 O 100 O 0 100 100 O 100 100 10.05 100 100 100 100 100
100 0 100 0 O O 0 0 0 0 0 0 0 0 100 O 0 0 0 0 100
11 0 1001000100 O O O 0 100 O 0 100 100 O O O 73.73 0 100
12|20.25 100 100 0 100 67.56 100 49.04 100 100 100 O 100 100 86.6 100 100 100 100 100
13] 0 100 0 05506 O 0 0 0 100 O 0 0 100 O 0 0 0 0 100
14 0 100 0 O O 0O 0 O 0o 0 O 0 0 0 0O 0 O 0 0 27.87
15 0 100 1000 100 0 100 O 89.95100 100 134 100 100 O 100 100 100 100 100
16/ 0 100 100 0 100 O 0 0 0 100 100 O 100 100 O 0 100 100 100 100
171 0 100 100 0 100 O 0 0 0 100 100 O 100 100 O 0 0 100 84.3 100
18| 0 100 1000 100 O 0 0 0 10026.27 O 100 100 O 0 0 0 0 100
19 0 100 1000 100 O 0 0 0 100 100 O 100 100 O 0 157 100 O 100
200 0 100 0O O O 0 0 0 0O 0 O 0 0 7213 0 0 O 0 0 0

and b3(as) = 49.04%), while Veneto (ID = 6) is always in fourth or fifth position (b3(ag) = 32.44%
and b3 (ag) = 67.56%);

e Tuscany (ID = 7), Trentino-South Tyrol (ID = 16), Emilia Romagna (ID = 3) and Basilicata
(ID = 10) are always set on ranks 8, 9, 14 and 17, respectively.

Considering the PWIs, the data in Table R0l show that in most of the cases, there is an evident preference
for one alternative over the other since pp(a,b) = 100% and, therefore, pp(b,a) = 0%. The only doubtful

cases are the following:

e Trentino-South Tyrol (ID = 5) is preferred to Abruzzo (ID = 13) with a frequency of 44.94%, while

the vice versa is true for 55.06% of the cases;

e Emilia-Romagna (ID = 8) and Lazio (ID = 12) are preferred one to the other with similar frequencies
since p3(8,12) = 50.96%, while p3(12,8) = 49.04%.

In all other cases, one region is preferred to the other with a frequency not lower than 67.56%.

Let us observe that the barycenter shown in Table 22]is computed as the average, component by com-
ponent, of the sampled measures. The first observation is that the two rankings are the same. On the
one hand, considering the top of the ranking, Lombardy is in the first position, followed by Piedmont, while
Emilia-Romagna and Lazio, which had similar frequencies to be preferred one to the other, are third and
fourth, respectively. On the other hand, looking at the bottom of the same ranking, the last three places
are taken by Sardinia, Molise, and Aosta Valley.

Commenting on the barycenter shown in Table 22] taking into account the weights assigned to single criteria
without considering interactions, one can observe that Number of Smart specialized companies with high

intensity of investments in social and environmental responsibility (2018) (9(373)) has a greater weight than
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Table 21: Basic Framework - Expected Ranking and ranking obtained using the approximation of the barycenter shown in
Table [22]

(a) Expected Ranking (b) Ranking based on barycenter parameters
Rank Region D ER(") Rank Region D Ul(a;)
1 Lombardy 4 100 1 Lombardy 4 0.88213
2 Piedmont 1 220.25 2 Piedmont 1 0.63429
3 Emilia-Romagna 8 349.04 3 Emilia-Romagna 8 0.62726
4 Lazio 12 376.55 4 Lazio 12 0.62696
5 Veneto 6 467.56 5 Veneto 6 0.61956
6 Campania 15 596.64 6 Campania 15 0.60514
7 Tuscany 9 689.95 7 Tuscany 9 0.58144
8 Friuli-Venezia Giulia 7 800 8 Friuli-Venezia Giulia 7 0.53377
9 Apulia 16 900 9 Apulia 16 0.51954
10 Basilicata 17 1015.7 10 Basilicata 17 0.51014
11 Sicily 19 1084.3 11 Sicily 19  0.49586
12 Marche 11 1226.27 12 Marche 11  0.46705
13 Calabria 18 1273.73 13 Calabria 18 0.46239
14 Liguria 3 1400 14 Liguria 3 0.40986
15 Abruzzo 13 1544.94 15 Abruzzo 13 0.40613
16 Trentino-South Tyrol 5 1555.06 16 Trentino-South Tyrol 5 0.40601
17 Umbria 10 1700 17 Umbria 10  0.39053
18 Sardinia 20 1827.87 18 Sardinia 20  0.36098
19 Molise 14 1872.13 19 Molise 14 0.35267
20 Aosta Valley 2 2000 20 Aosta Valley 2 0.27889

Table 22: Basic Framework - Parameters of the approximated barycenter

m({g(s,l)}) m({g(s,z)}) m({g(3,3)}) m({g(3,1)79(3,2)}) m({g(3,1)7g(3,3)}) m({9(3,2)7g(3,3)})
0.0918 0.3540 0.7306 0.0768 -0.0100 -0.2432

Percentage of value added by Smart specialized companies to the total value added in the region (2018)
(9(3,2)) that, in turn, has a greater weight than Percentage of Smart specialized companies (2018) (g(s,1))-
Moreover, there is a positive interaction between g(s 1) and g3 2) (m ({9(371),9(372)}) = 0.0768)7 while there
is a negative interaction between g3 1) and g(3 3 (m ({9(3,1),9(3,3)}) = —0.0100) as well as between g(3 2)
and g(3 3) (m ({9(3,2),9(373)}) = —0.2432).

5.2. Imprecise Information

Let’s suppose in this case that the DM provides their preferences on the same 5 regions above considered
both globally (go) and on the single macro-criteria (Circular Economy - g;, Innovation-Driven Development
- g2, Smart Specialization - g3). Moreover, for each macro-criterion, the DM provides interval or imprecise
information (see Section [4.2]). Let us assume that the preference is articulated as shown in Table 23] and let
us comment on it.

Considering the information in Table 23al the DM retains that, at the global level, Molise is the least
preferred region, followed by Liguria, Marche, Friuli-Venezia Giulia and, finally, Veneto, being the most
preferred. On the one hand, the DM provides imprecise information regarding the number of blank cards

between the zero fictitious level and Molise <[e(LO 0) e{g 0)} = [40, 50]), the number of blank cards between

Liguria and Marche <[e(LO 2) e{% 2)] =1, 6]) and the number of blank cards between Friuli-Venezia Giulia

and Veneto ([e(LO 1)’ e% 4)} =[1, 7]> On the other hand, the DM gives missing information on the number
of blank cards between Molise and Liguria since e(LO 1 =7 and for the number of blank cards between Marche
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Table 23: Imprecise Information - DM’s preference at global and macro-criteria level

(a) Global level - g(q)

D Region Level
6 Veneto U

€(0.4) € [e 0,4)’6(0,4)] =117
7 Friuli-Venezia Giulia I U

€(0,3) € [6(0,3)7 e(0,3)] =[7.7
11 Marche L U

€0,2) € [5(0,2)7 5(0,2)] =11,6]
3 Liguria L U .

€,1) € [6(071), 6(0’1)] =[7,5]
14 Molise

€(0,0) S [ (0 0)’ (L:),O)] = [40750}
(b) Circular Economy - g(1)

D Region Level

6 Veneto e(,4) € [e(Ll,@’e(l 4)] = [1,6]
7 Friuli-Venezia Giulia e € [G(Ll,g)veu,s)] =1[7,4]
1 Marche e12) € [@(Ll,zw@f]l,m] =[1,3]
14 Molise e € [ehayelhy] = 1.5
3 Liguria e(1o) € [(1 0l 0)] [9, 16]

(c) Innovation-Driven - g(z)

D Region Level

7 Friuli-Venezia Giulia e € [e Loy, 4)] [1,5]
6 Veneto e € [E(Lz,gy@(z 3)] =1[2,7]
1 Marche ea) € [efy el )] = [,5]
3 Liguria e2,1) € [e 2,1) €2, 1)] (1, 6]
14 Molise e(z.0) € [ ety oyl 0)] = [10, 20]

(d) Smart Specialization - g(a)

D Region Level

6 Veneto 5. € [efaelo.n] = 16
7 Friuli-Venezia Giulia es) € [653’3)76 A 3)] =[3,7]
11 Marche €@3,2) € [E(Ls 2)*5%,2)] =123
3 Liguria e, € [3(L3,1)76(3 1)] =[7,7]

14 Molise
es0) € [ el 0y €%, 0)] — [10, 18]

and Friuli-Venezia Giulia since e?o 3) =7. The information contained in Tables can be interpreted
analogously. One thing that should be underlined is that using the MCHP within the proposed framework
(see Section [43]) the DM can provide different information on the considered macro-criteria. For example,

while the five reference regions are ordered in the same way at the global level (see Table 23al) and on Smart
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Specialization (see Table 23d)), the same does not happen for the other two macro-criteria. Indeed, while
Liguria is preferred to Molise at the global level, the vice versa is true on Circular Economy (see Table 23D]).
Analogously, while Veneto is preferred to Friuli-Venezia Giulia at the global level, the vice versa is true on
Innovation-Driven Development (see Table 23d). This permits the DM to give more detailed information
not only at the global but also at the partial one.

Solving the LP problem (I9) and assuming the weighted sum as preference model, we find @ = 0.
Therefore, this time, the weighted sum can represent the preferences given by the DM. Solving the LP
problem (20) maximizing the blank cards’ values, we get the weights of the elementary criteria shown in
Table 24] as well as the number of blank cards and the value of one blank card (globally and on all macro-
criteria) shown in Table

Table 24: Imprecise Information - Elementary criteria weights obtained solving LP problem (20) and assuming the weighted
sum as preference model

Wa,1) W2 Wag) Wei We2 We3s) Wsl o WE2) W)
0.097 0.119 0 0.385 0.047 0.01 0.033 0.159 0.149

As one can see, the number of blank cards to be included between two successive levels is perfectly
compatible with the DM’s preferences. For example, while the DM stated that e 4y € [1,7] (see Table 23al),
the number of blank cards obtained solving the LP problem is e(g 4y = 1.1604 (see Table 23]). Analogously,
while the DM stated that e(g 3) € [3, 7] (see Table 23d)), the value obtained solving the previously mentioned
LP problem is e33) = 3 (see Table 25]). Considering, instead, the weights obtained for the considered
elementary criteria, it seems that Renewable Electricity (percentage) (2017) has not any importance since
w(,3) = 0, while, the most important elementary criterion is Research and Development Personnel (full-
time equivalents per thousand inhabitants) (2017) (w(z 1y = 0.385), followed by Percentage of value added
by Smart Specialized companies to the total value added in the region (2018) (w3 2y = 0.159) and Number
of Smart Specialized companies with high intensity of investments in social and environmental responsibility
(2018) (w(g3) = 0.149).

To get more robust recommendations on the problem at hand, we computed the ROR and SMAA
methodologies. To save space, we do not report here all the corresponding tables that are provided, instead,
as supplementary material. Let us comment on the results obtained by SMAA.

Considering the RAIs at the global and partial levels, the following can be observed:

Table 25: Imprecise Information - Number of blank cards and value of a single blank card both at the global and partial levels

9(0) 9g@) g(2) 9(3)

(0,4) 1.1604 6(174) 1.2139 6(274) 1 6(3 4) 2.7161
03 102139 | eqs 12674 | ez 49015 | s
€(0,2) 6 €(1,2) 1 €(2,2) 0 e@3,2) 4.8209
(0,1) ) ) (3,1)
(0,0) ) ) (3,0)

9 6(171 0.3637 6(271 6 (&
40 e,0 13.0545 | e20) 19.3095 | e 18
ko 0.0095 k1 0.0063 ko 0.0085 ks 0.0063
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Table 26: Imprecise Information - Comparison between RAIs computed at global and partial levels by the MCHP: Focus on
Lombardy (ID = 4) and Trentino-South Tyrol (ID = 5)

nglk 1 2 3 45 6 7 89101112 13 14 1516 17 18 19 20
gy 100 0 o 00 O O0O0OOOOO O 0 00 O0O0O0O

4 gay 0 610738930 0 0 0 000 0 O O 0 00 O0O0O0O
gez) O 0 0 0100 0 0 000 OO O 0 000 O0O00O0

gy 100 0 o 00 O O0O0OOOOO O 0 00 O0O0O0O

Jgoy O 0 0 00 0 10000000 O 0 000 O0O0O0

5 gay 0 389361070 0 0 0 000 O O O 0 000 O0O00O0
gz O 0 0 00 100 0 000 0O O 0 00 O0O0O0O

gay O 0 0 00 O O0O0O0O0OO0O022377610 0 0 0 0 O

e At the global level, Lombardy (ID = 4) is always at the first position (b}(as) = 100%), while, Sicily
(ID = 19) is always in the last rank position (b3’(a19) = 100%);

e On Circular Economy, Veneto (ID = 6) is always first (bl (ag) = 100%), while Sicily is always at the
bottom of the ranking (b3°(a19) = 100%);

e On Innovation-Driven Development, Emilia-Romagna (ID = 8) is robustly in the first position
(bl (ag) = 100%), while Calabria (ID = 18) is always in the last rank position (b3’(a1s) = 100%);

e On Smart Specialization, Lombardy is in the first rank position in all considered cases (b} (as) = 100%),
while the last position is taken by Aosta Valley (ID = 2) and Sardinia (/D = 20) with frequencies
90.19% and 9.81%, respectively.

Even if the previous analysis permits to appreciate the recommendations on the considered regions at

the partial level, let us underline even more this aspect considering the data in Table In the table, we
report the RAIs at the global and partial levels for two regions, that is, Lombardy (ID = 4) and Trentino-
South Tyrol (ID = 5). As one can see, while at the global level and on Smart Specialization, Lombardy
is always in the first rank position, the same cannot be said for Circular Economy and Innovation-Driven
Development. On the one hand, considering Circular Economy, Lombardy is in the second or third positions
with frequencies of 61.07% and 38.93%, respectively, while, on the other hand, it is always fifth on Innovation-
Driven Development.
The different recommendations provided by the introduced framework are even more evident considering
Trentino-South Tyrol. Indeed, while at the global level, it is always in the seventh position, on Circular
Economy it is between the second and the third positions (b3 (as5) = 38.93%) and (b3 (a5) = 61.07%), it is
always in the sixth position on Innovation-Driven Development, and, finally, it is between positions 13th
and 14th on Smart Specialization with frequencies of 22.39% and 77.61%, respectively.

To summarize the results of the RAIs, let us show in Table 27 the expected rankings both at the global
and partial levels.

Looking at the data in the tables, one has the confirmation of the goodness of Lombardy being in the
first rank-position at the global level and on Smart Specialization, while, it is second-ranked on Circular
Economy and fifth-ranked on Innovation-Driven Development. Analogously, looking at the bottom of the

rankings, Sicily performs badly at the global level and on Circular Economy being placed in the last position
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Table 27: Imprecise Information - Expected rankings of the considered regions both at the global and partial levels

(a) Global level - g(o) (b) Circular economy - g(1)

Rank Region ID ER(-) Rank Region ID ER(-)
1 Lombardy 4 100 1 Veneto 6 100
2 Emilia-Romagna 8 200 2 Lombardy 4 238.93
3 Piedmont 1 345.76 3 Trentino-South Tyrol 5 261.07
4 Veneto 6 354.24 4 Sardinia 20 400
5 Friuli-Venezia Giulia 7 500 5 Basilicata 17 500
6 Lazio 12 600 6 Friuli-Venezia Giulia 7 600
7 Trentino-South Tyrol 5 700 7 Piedmont 1 700
8 Tuscany 9 800 8 Abruzzo 13 800
9 Marche 11 900 9 Campania 15 900
10 Campania 15 1000 10 Umbria 10 1000
11 Umbria 10 1100 11 Marche 11 1100
12 Basilicata 17 1226.97 12 Calabria 18 1200
13 Liguria 3 1273.03 13 Aosta Valley 2 1348.36
14 Abruzzo 13 1400 14 Mbolise 14 1351.64
15 Apulia 16 1500 15 Apulia 16 1500
16 Molise 14 1608.87 16 Lazio 12 1600
17 Sardinia 20 1691.13 17 Liguria 3 1700
18 Calabria 18 1834.82 18 Emilia-Romagna 8 1800
19 Aosta Valley 2 1865.18 19 Tuscany 9 1900
20 Sicily 19 2000 20 Sicily 19 2000

(c) Innovation-Driven - g(a) (d) Smart Specialization - g(g)

Rank Region ID ER(-) Rank Region ID ER()
1 Emilia-Romagna 8 100 1 Lombardy 4 100
2 Friuli-Venezia Giulia 7 200 2 Lazio 12 200
3 Piedmont 1 300 3 Piedmont 1 300
4 Veneto 6 400 4 Emilia-Romagna 8 400
5 Lombardy 4 500 5 Veneto 6 500
6 Trentino-South Tyrol 5 600 6 Tuscany 9 600
7 Lazio 12 700 7 Friuli-Venezia Giulia 7 700
8 Tuscany 9 800 8 Campania 15 800
9 Marche 11 900 9 Basilicata 17 900
10 Liguria 3 1000 10 Apulia 16 1000
11 Umbria 10 1100 11 Marche 11 1100
12 Abruzzo 13 1200 12 Sicily 19 1200
13 Molise 14 1310.59 13 Calabria 18 1322.39
14 Campania 15  1389.44 14 Trentino-South Tyrol 5 1377.61
15 Aosta Valley 2 1499.97 15 Abruzzo 13 1500
16 Apulia 16 1600 16 Umbria 10 1600
17 Basilicata 17 1700 17 Liguria 3 1700
18 Sardinia 20 1800 18 Molise 14 1800
19 Sicily 19 1900 19 Sardinia 20  1909.81
20 Calabria 18 2000 20 Aosta Valley 2 1990.19
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but also on Innovation-Driven Development since it is in the second to last position. However, it is not so
badly ranked on Smart Specialization since it is placed in the 12th rank position.

Regarding some other regions, a floating behavior can be observed. For example, Trentino-South Tyrol is
seventh at the global level, while, it is third on Circular Economy, sixth on Innovation-Driven Development
and fourteenth on Smart Specialization. This means that, while Circular Economy can be considered a
strong point of the region, Smart Specialization can be considered a weak point deserving improvement.
Analogously, Sardinia, is seventeenth at the global level, while it is ranked fourth on Circular economy,
eighteenth on Innovation-Driven Development and nineteenth on Smart Specialization.

This information can be used by policymakers and political governments to evaluate which are the weak and
strong points of each region and, consequently, build politics aiming to improve the weak points by pushing

on the strong points.

6. Conclusions

Preference parameter elicitation procedures are fundamental to Multiple Criteria Decision Aiding (MCDA)
and must take into account two main requirements: on the one hand, the preference information requested
from the Decision Maker (DM) must be as simple and easy as possible, and on the other hand, it must be
as rich and precise as possible. In this perspective, we considered the newly introduced Deck of cards based
Ordinal Regression (DOR) (Barbati et all, 2024) that permits to collect preference information not only in
terms of ranking of reference alternatives but also of intensity of preferences. This can be done through the
Deck of Cards Method (DCM) that, in general, is perceived as a relatively intuitive and straightforward
method and, as discussed at length in this paper, also with other well-known MCDA procedures such as
AHP, BWM and MACBETH. In this context, we took into consideration some issues that are particularly
relevant in real-world applications: robustness concerns; imprecision, incompleteness and ill determination
of the preference information; and hierarchy of considered criteria. With this aim, Robust Ordinal Regres-
sion, Stochastic Multicriteria Acceptability Analysis, and Multiple Criteria Hierarchy Process were extended
to DOR. Observe that the proposed approach puts together two main research streams in MCDA, that is,
on the one hand, the scaling procedures related to DCM, AHP and MACBETH, and, on the other hand,
the ordinal regression with its extensions such as Robust Ordinal Regression. The resulting methodology is
very flexible and versatile. Indeed, according to the requirements and the previous experiences of the DM,
one can select 1) the most appropriate scaling procedure such as DCM, AHP, BWM, MACBETH or other
analogous methodologies acquiring and processing DM’s pairwise preferences comparisons between reference
alternatives; 2) the most adequate formal model of a value function, e.g. weighted sum, piecewise additive
value function, Choquet integral, assigning an overall evaluation to each alternative; 3) the most satisfactory
form to represent preferences on the set of alternatives taking into account imprecision and indetermination
in the preference parameters, e.g. possible and necessary preferences, pairwise preferences probability or
probability of attaining a given ranking. This so rich and ductile methodology can be successfully applied
to complex real-world decision problems characterized by (i) many heterogeneous criteria structured in a
hierarchical way; (ii) vague and approximate preference information; (iii) plurality of experts, stakeholders,
policymakers and, in general, diversified actors participating to the decision process. We have shown the
potential of the proposed methodology in a didactic example related to the ranking of Italian Regions with
respect to Circular Economy, Innovation-Driven Development and Smart Specialization Strategies. The
example is based on a large ongoing national project financed by the European Union - NextGenerationEU

where Italian Regions are evaluated on several elementary criteria so that those considered in our example
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are just a small subset. Let us underline that the methodology can be applied across various contexts such
as environmental or human development and potentially in the construction of composite indicators in any
domain (for an updated state-of-the-art survey on composite indicators see |Greco et al.[2019a).

For the future, we plan to apply the proposed methodology to some real-world decision problems aiming,
on the one hand, to test its effectiveness, reliability and validity and, on the other hand, to develop some
customized procedures and protocols for applications in specific domains. Related to this, we would like
to test the advantages of the proposed methodology in some decision experiments that could unveil spaces
for further improvements. A further domain for future research is the extension of DOR to sorting decision
problems in which the alternatives, rather than ordered from best to worst, have to be assigned to predefined
ordered classes. We would like also to explore a possible extension of DOR to outranking methods such as
ELECTRE (Figueira et all,2013; |Govindan and Jepsen, 2016) and PROMETHEE (Behzadian et al., 2010;
Brans and Vincke, [1985).
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Appendix A. Different preference models

The procedure described in Sections 2] - M, proposing to apply the DCM to build a value function
compatible with a few DM’s preferences, is independent of the type of the assumed preference model U. For
this reason, in the following, we shall recall four different types of value functions that can be used under
the proposed framework to build a compatible value function, namely, a weighted sum, a piecewise linear
value function (Jacquet-Lagreze and Siskod, [1982), a general additive value function (Greco et al., |2008) and
the Choquet integral value function (Choquet, 1953; |Grabisch, 1996). The choice of the considered value
function will determine the constraints composing the E*°%! set mentioned at first in the LP problem (T))
included in Section [2] and, therefore, present in the subsequent mathematical problems. The four preference

functions are described in the following.

Weighted sum: denoting by wi, ..., w, the weights of criteria gi,...,gn, EM°% is the following set of

constraints:

Ula) = Zwi - gi(a) for all a € A,
i=1

w; =0, foralli=1,...,n, EModel

i=1

Under the MCHP framework, the value assigned by U to alternative a on macro-criterion g, is Uy (a) =

Z wy - g¢ (@) where wy is the weight attached to the elementary criterion g¢ and they are such that

tEE(gr)
wy > 0 for all t € EL. In this case, the parameters defining the value function U are the weights ws,

te FL;
n
Piecewise linear value function: in this case, the value function U is such that U(a) = Z u;(gi(a)) for
i=1

all a € A and each u; : A — R is a piecewise linear value function for each g; € G. Assuming that all
criteria are expressed on a quantitative scale and X; = {3:21, ...,x;"} C R is the set of possible values
that can be obtained on criterion g; € G, each function u; is defined by ~; breakpoints yil, Lyt eR
such that y} < -+ < y)" and

1 m; 1,2 i—1 i
Therefore, the marginal value function u; will be defined by means of u;(y}),...,u;(y;") only so that,

if gl(a) € [yg_17yg]7 q= 27 <oy Vi, WE have

wlan(a)) = =94 (gm1) 90—l

q q—
%

or, equivalently,
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EModel

Consequently, is replaced by the following set of constraints:

= Zui(g,-(a)) for all a € A,
u,-(yg_l) Sui(yl), foralli=1,...,n, and for all g = 2,..., 7,

EModel
u,( =0, foralli=1,.

Zui (") =1
i=1

7

Under the MCHP framework, the value of @ w.r.t. macro-criterion gy is equal to Uy (a) = Z ut (g¢(a)).

tEE(gr)
In this case, the set of criteria G' has to be replaced by the set of elementary criteria {g¢, t € EL};

General additive value function: Denoting by X; = {z},... 2"} C R the set of possible values that
can be obtained on criterion g; € G, the marginal value function u; depends on u;(z}),...,u;(z]")
only. EModel s yeplaced by the following set of constraints:

Ula) = Z u;(gi(a)) for all a € A,

wi(x f= 1)<ul( '), foralli=1,...,nand for all f=2,...,m;,

'l
M odel
EGA

ui(z}) =0, foralli =1,...,n,
Zuz‘ (") =1
i=1

Under the MCHP framework the definition of U, is the same considered when the preference model is

a piecewise linear value function. The only difference w.r.t. the previous case is that for each marginal
value function ug, t € EL, the breakpoints coincide with the evaluations of the alternatives on that

elementary criterion, that is, yi = z{, y2 = 22, ..., yt =zt

Choquet integral value function: as known in literature, a value function U can be written in an ad-

ditive way (U(a) = Z u;(gi(a))) iff the criteria from G are mutually preferentially independent
gi€G
(Wakker, [1989). However, in real-world applications, the criteria present generally a certain degree of

interaction. In particular, given g;, g7 € G, we say that g; and gy are positively (negatively) interacting
if the importance given to them together is greater (lower) than the sum of their importance when
considered alone. To take into account these interactions, non additive integrals are used in literature
(Grabisch and Labreuche, 2016) and the most known is the Choquet integral. It is based on a capacity

being a set function y : 2¢ — [0, 1] such that the following constraints are satisfied:

la) pu(R) < p(S) for all R C S C G (monotonicity),
2a) u(0) =0 and pu(G) =1 (normalization).

Known g, the Choquet integral of (g1 (a), ..., gn(a)) is computed as follows:

n

Chy(a) =Y [g6)(a) = gu—1)(@)] - n(Ag)

i=1
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where () is a permutation of the indices of criteria in G such that 0 = gy (a) < g1)(a) < -+ < g)(a)
and Ay = {gy € G: gy(a) = g (a)}.

Since the use of the Choquet integral implies the definition of 2!¢/ — 2 values (one for each subset of G
different from () and G), in real-world applications the Mobius transformation of u (Rota, 1964) and
k-additive capacities (Grabisch, [1997) are used:

e the Mobius transformation of a capacity u is a set function m : 2¢ — R such that u(T) =
> m(S),
scT

e a capacity p is said k-additive if its Mdbius transformation is such that m(7T) = 0 for all T' C
G,|T| >k

Because, as stated in (Grabischl, 1997) and demonstrated by several real-world applications (see, e.g.,
(Grabisch et all, 2002; Berrah and Clivillé, 2007; [Angilella et all, [2018)), as well as in combination
with other methodologies such as multi-objective optimization (see, e.g., (Branke et all, 2016)), 2-
additive capacities represent a useful compromise between a fully additive but simplistic model (a
weighted sum, implying independence between criteria) and a fully general but difficult-to-handle
Choquet integral model (which poses challenging elicitation issues). Therefore, in the following, we

consider the Choquet integral in terms of a 2-additive capacity formulated as follows:

U@) =Y m{g}) gila)+ > m({gigr}) min{gi(a),gr(a)}.

9:€G {9i,941CG

EModel is therefore replaced by the following set of constraints:

Ula) =Y m({g})-gi@)+ > m{gi,90}) - min{gi(a), gu(a)} for all a € A,

gi€G {9i,94}CG

Model
> om {gz > mlgigr}) =1, EChoquet

9:€G {gl,gll}CG

({g:}) + Z ({gi,9#}) 20, for all g; € G, and T C G
gi€T J

3

where the last three constraints are the equivalent of normalization (2a)) and monotonicity (1a))
constraints when a 2-additive capacity is used. Under the MCHP framework, the value of an alternative

a € A w.r.t. macro-criterion g, is given by

Ua)= > m{ge})-g@+ D m{ge,0}) min{g, (a), g, (a)}.

teE(gr) {t1,t2}CE(gr)

Let us conclude this section observing that all mathematical programming problems discussed in the pre-
vious sections are linear because the considered preference models are affine in their parameters, that is,
Uart(1—ay (@) = a - Ux(a) + (1 — ) - Ups(a) for all a € [0,1]. In particular,

e if U is a weighted sum, then 7w = [wy, ..., wy],

e if U is a piecewise linear value function, then m = [u; (y})] i=1,...n ,
:27 -Yi

e if U is a general additive value function, then 7 = [uz (azzf )] =l
f=2,...,m;
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e If U is a 2-additive Choquet integral, then, m = |[m ({g:})],,cc - [m ({95, 90 D]yg, g.1ca |-

Appendix B. Extended formulation of the LP problems to be solved in the example 2.2

e In example

o =min{o"(a) + 0~ (a) + oT(b) + o= (b)}, subject to,

U(a) = u1(0.3) + u2(0.7)

U(b) = u1(0.4) + u2(0.6)

U(c) = u1(0.8) 4+ uz(1)

11(0.3) < u1(0.4) < uy(0.8) Mo

12(0.6) < u(0.7) < ug(1) oA

u1(0.3) =0 B.1)
u2(0.6) = 0 EDPM
u1(0.8) 4+ up(1) = 1

U(a) = U(b)

U(a) — ot (a) + 0~ (a) = k - 100

U(b) — ot (b) + o (b) =k - 70

k* = max k, subject to,
EPM (B.2)

EDM
ot(a) +o (a) + ot (b) + 0 (b) <7+ n(@).
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Table 28: Imprecise Information - Possible preference relation between regions on global level
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Table 29: Imprecise Information - Possible preference relation between regions on Circular Economy

1 12 13 14 15 16 17 18 19 20

10

2

ID | 1

0 0 0 0 1

1

0 0 0 1

1

0 0 0 0 1

1

0 0 0 0 1

1

10
11
12

13
14
15

16
17
18
19
20

Table 30: Imprecise Information - Possible preference relation between regions on Innovation-Driven Development
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Table 31: Imprecise Information - Possible preference relation between regions on Smart Specialization
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Table 32: Imprecise Information - Necessary preference relation between regions on global level

1 12 13 14 15 16 17 18 19 20

10

2

ID | 1

0

0O 0 0 O O o

1

0 0 0 1

1

1

0O 0 0 O O o

1

0O 0 0 0 0 0 0 0 o

0

10
11
12

13
14
15

16
17
18
19
20




Table 33: Imprecise Information - Necessary preference relation between regions on Circular Economy
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Table 34: Imprecise Information - Necessary preference relation between regions on Innovation-Driven Development
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Table 35: Imprecise Information - Necessary preference relation between regions on Smart Specialization
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Table 36: Imprecise Information - Rank Acceptability Indices (RAIs) on global level
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Table 37: Imprecise information - Rank Acceptability Indices (RAIs) on Circular Economy
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Table 38: Imprecise Information - Rank Acceptability Indices (RAIs) on Innovation-Driven Development
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Table 39: Imprecise Information - Rank Acceptability Indices (RAIs) on Smart Specialization
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Table 40: Imprecise Information - Pairwise Winning Indices (PWIs) on global level
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1 2 3 45 6 7T 8 9 10 11 12 13 14 15 16 17 18 19 20
0 100 100 0 100 54.24 100 0 100 100 100 100 100 100 100 100 100 100 100 100
0 0 0 00 0 o 0o 0o 0 0 0 0 0 0 O 0 3482100 O
0O 100 0 00O O O O O O O O 100100 O 10026.97 100 100 100
100 100 100 0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
0 100 100 0 O 0 0 0 100 100 100 O 100 100 100 100 100 100 100 100
45.76 100 100 0100 0 100 0 100100100100100100100100 100 100 100 100
0 100 100 0100 0 O O 100100100100100100100100 100 100 100 100
100 100 100 O 100 100 100 O 100 100 100 100 100 100 100 100 100 100 100 100
0 100 100 0 O 0 0 0 0 100 100 O 100 100 100 100 100 100 100 100
0 100 100 O O 0 o 0 0 O O O 100100 O 100 100 100 100 100
0 100 1000 O O O O O 100 0O O 100100100100 100 100 100 100
0 100 100 0100 O 0 0 100 100 100 O 100 100 100 100 100 100 100 100
0 100 0 0 O 0 o 0 0o 0o O O O 100 O 100 O 100 100 100
0O 100 0 00O O O O O O O o o0 o0 o0 o 0 100 10091.13
0 100 100 0 O 0 0 0 0 100 0 0O 100100 O 100 100 100 100 100
0 100 0 0 O 0 o 0 0o 0o 0 O 0 100 0 O 0 100 100 100
0 100 73.030 0 0 0O 0 0 O O O 100100 0 100 O 100 100 100
0 6518 0 0 O 0 o 0o 0o 0 06 0 0 0 0 O 0 0 100 O
0 0 0 00 0 o 0 o o 0 O O o0 0 O 0 0 0 0
0 100 0 0 0 0 0 0 0 0 0 O 0887 0 O 0 100 100 O




Table 41: Imprecise Information - Pairwise Winning Indices (PWIs) on Circular Economy

ID| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
10 100 100 O 0 0 0 100 100 100 100 100 100 100 100 100 O 100 100 O
210 0 100 O 0 0 0 100100 0O 0O 100 O 5164 0 100 O O 100 O
3]0 0 0O 0 0O 0 0 100100 0 0 O O O O O O O 100 0
41100 100 100 O 61.070 100 100 100 100 100 100 100 100 100 100 100 100 100 100
5100 100 100 38.93 0 0100 100 100 100 100 100 100 100 100 100 100 100 100 100
6 {100 100 100 100 100 0100100100100100100100 100 100100100100100100
7 (100 100 100 O 0 0 0 100100100100100100 100 100100 0 100100 O
81 0 0 0 0 o oo 01000 0 o o O O 0 0 0 100 O0
910 0 0 O o o0 0o o o0 o0 o o o o o0 0 o0 100 0
101 0 100 100 O 0 0 0 100 100 O 100 100 O 100 O 100 O 100 100 O
11{ 0 100 100 O 0O 0 0 100100 0 O 100 0 100 O 100 O 100100 O
121 0 0 100 O 0 0 0 100100 0 0 O O O O O O o0 100 O
13 0 100 100 O 0 0 0 100 100 100 100 100 O 100 100 100 O 100 100 O
14| 0 48.36100 O 0O 0 0 100100 0 0 100 0 O O 100 O O 100 O
15/ 0 100 100 O 0 0 O 100 100 100 100 100 O 100 O 100 O 100 100 O
16| 0 0 100 O 0 00 100100 0 0 100 0 O O O O 0 100 O
17/100 100 100 O 0 0100 100 100 100 100 100 100 100 100 100 O 100 100 O
18 0 100 100 O 0 0 0 100100 O O 100 O 100 O 100 O O 100 O
19| 0 0 0 0 o oo o0 o0 0 0 o o o0 o0 o o0 o0 o0 o0
20{100 100 100 O 0 0100 100 100 100 100 100 100 100 100 100 100 100 100 O

Table 42: Imprecise Information - Pairwise Winning Indices (PWIs) on Innovation-Driven Development

ID| 1 2 3 4 5 6 789 10 11 12 13 14 15 16 17 18 19 20
1({0 100 100 100 100 100 0 0 100 100 100 100 100 100 100 100 100 100 100 100
210 o o0 o0 o0 o o0O0O O O 0 O 0 0.03 100 100 100 100 100
3/0 100 0 0 O O OO O 100 O O 100 100 100 100100100100100
410 100 100 O 100 O O 0100 100 100 100 100 100 100 100 100 100 100 100
5/ 0 100 100 0 0 0 O 0100 100 100 100 100 100 100 100 100 100 100 100
6/ 0 100 100100100 O O 0100100100100100 100 100 100100 100100100
7 (100 100 100100100100 0 0100100100100100 100 100 100100100100100
8 (100 100 100 100 100 100 100 0 100 100 100 100 100 100 100 100 100 100 100 100
9/0 100 100 O 0 O O O O 100 100 0O 100 100 100 100 100 100 100 100
00 100 0 0 0 O 00O O O 0 100 100 100 100 100 100 100 100
11 0 100100 0O 0 O 0O O 100 O O 100 100 100 100100100100100
12/ 0 100 100 0 O O O 0100 100 100 O 100 100 100 100 100 100 100 100
30 100 0 0 0o O O0O0OO0O O O O O 100 100 100 100 100 100 100
140 100 0 0 0 0O 0O0OO O O O O O 89.41100100100100100
1500 997 0 0 0 O OOO O O O 0 1059 0O 100 100 100 100 100
16| 0 o o0 o0 o0 o o0O0O O O 0 O 0 0 0 100 100 100 100
171 0 o o o0 o0 o oo0O0O O 0 0 O 0 0 0 0 100 100 100
181 0 o o o0 o0 o oo0O0O O 0 0 O 0 0 0O 0 0 0 O
19| 0 o o0 o0 o0 o0 00O O O 0 O 0 0 0 0 100 0 O
20| O o o o0 o0 o oo0O0O O 0 0 O 0 0 0 0 100 100 O




Table 43: Imprecise Information - Pairwise Winning Indices (PWIs) on Smart Specialization

Ibjtr 2 34 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1|10 100 100 0 100 100 100 100 100 100 100 O 100 100 100 100 100 100 100 100
26 o o0 O O O OO O OOO OO 0 O 0 0 9.81
30 100 00 O 0 0O O O O O 0O 01000 O O O O 100
4 (100 100 100 0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
5|0 100 1000 0 O O O O 100 O O 100100 O O 0 2239 0 100
6|0 100 1000 100 0 100 0 100100100 0 100100100100100 100 100100
70 100 1000100 0 O O O 100100 0 100100100100100 100 100 100
810 100 100 0 100 100 100 O 100 100 100 O 100 100 100 100 100 100 100 100
9|10 100 1000 100 O 100 O O 100 100 O 100 100 100 100 100 100 100 100
10{ 0 100 1000 0 O O O O O O O O 100 0 0 O 0 0 100
11 0 100 1000 100 0 O O O 100 O O 100100 O O O 100 100100
12|100 100 100 0 100 100 100 100 100 100 100 0O 100 100 100 100 100 100 100 100
130 100 1000 0 O O O O 100 O O O 100 O O O 0 0 100
140 100 0 0O O 0 0 0 0 0O O 0 0 o O O O o0 O 100
15 0 100 1000 100 0 O O O 100 100 O 100 100 O 100 100 100 100 100
16/ 0 100 1000 100 0 O O O 100 100 O 100 100 O O O 100 100 100
17/ 0 100 1000 100 O O O O 100 100 O 100 100 O 100 O 100 100 100
18 0 100 10007761 0 O O O 100 O O 100100 O O O 0 0 100
19 0 100 1000 100 0 O O O 100 O O 100100 O O O 100 O 100
2000 9019 0 0 0O 0 0 0 O OO O O 0O 0 0 O 0 0 O

Table 44: Imprecise Information - Parameters of the approximated barycenter

Wy  Waz) Wags) Wea  We2) Wes) Wel WeE2)  Wss)

0.1132 0.1413 0.0055 0.3909 0.0432 0.0045 0.0213 0.1470 0.1333




Table 45: Imprecise Information - Ranking obtained using the approximation of the barycenter at the global and partial levels

(a) Global level - g(o) (b) Circular Economy g(y)

Rank Region ID Ula;) Rank Region ID Ulay)
1 Lombardy 4 0.68507 1 Veneto 6 0.16497
2 Emilia-Romagna 8 0.67725 2 Lombardy 4 0.16023
3 Piedmont 1 0.63784 3 Trentino-South Tyrol 5 0.15999
4 Veneto 6 0.63754 4 Sardinia 20  0.15675
5 Friuli-Venezia Giulia 7 0.61808 5 Basilicata 17 0.15154
6 Lazio 12 0.58197 6 Friuli-Venezia Giulia 7 0.14851
7 Trentino-South Tyrol 5 0.56066 7 Piedmont 1 0.14144
8 Tuscany 9 0.53991 8 Abruzzo 13 0.14075
9 Marche 11 0.51384 9 Campania 15 0.13838
10 Campania 15 0.47194 10 Umbria 10 0.13564
11 Umbria 10 0.45911 11 Marche 11 0.13179
12 Basilicata 17 0.44823 12 Calabria 18 0.12818
13 Liguria 3 0.44756 13 Aosta Valley 2 0.11782
14 Abruzzo 13 0.43893 14 Mbolise 14 0.11746
15 Apulia 16 0.40177 15 Apulia 16 0.11098
16 Molise 14 0.3919 16 Lazio 12 0.10812
17 Sardinia 20 0.38905 17 Liguria 3 0.10636
18 Calabria 18  0.37864 18 Emilia-Romagna 8 0.10318
19 Aosta Valley 2 0.3774 19 Tuscany 9  0.097505
20 Sicily 19  0.33549 20 Sicily 19  0.079469

(c) Innovation-Driven Development g(2) (d) Smart Specialization g(a)

Rank Region ID U(ay) Rank Region ID U(ay)
1 Emilia-Romagna 8 0.37848 1 Lombardy 4 0.24043
2 Friuli-Venezia Giulia 7 0.30325 2 Lazio 12 0.20246
3 Piedmont 1 0.297 3 Piedmont 1 0.1994
4 Veneto 6 0.28597 4 Emilia-Romagna 8 0.19559
5 Lombardy 4 0.28441 5 Veneto 6 0.18659
6 Trentino-South Tyrol 5  0.27447 6 Tuscany 9 0.17937
7 Lazio 12 0.27139 7 Friuli-Venezia Giulia 7 0.16632
8 Tuscany 9 0.26303 8 Campania 15 0.1639
9 Marche 11 0.2378 9 Basilicata 17 0.15654
10 Liguria 3 0.22915 10 Apulia 16 0.15002
11 Umbria 10 0.20654 11 Marche 11  0.14424
12 Abruzzo 13 0.17597 12 Sicily 19  0.13182
13 Molise 14 0.1706 13 Calabria 18 0.1275
14 Campania 15 0.16966 14 Trentino-South Tyrol 5 0.12621
15 Aosta Valley 2 0.16893 15 Abruzzo 13 0.12221
16 Apulia 16 0.14076 16 Umbria 10  0.11693
17 Basilicata 17 0.14014 17 Liguria 3 0.11205
18 Sardinia 20  0.13996 18 Molise 14 0.10384
19 Sicily 19 0.1242 19 Sardinia 20  0.09234
20 Calabria 18 0.12297 20 Aosta Valley 2 0.090645
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