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Abstract

Determining the factors that positively and negatively affect the resilience of transport networks
provides valuable information that leads to a deeper understanding of the preparedness and response
of networks to external disruptions. Over the past few decades, several review papers have explored
various interpretations of transport network resilience and its calculation metrics. Nevertheless, only
a limited number of these papers have paid attention on the utilization of empirical data in resilience
studies. This paper, through a systematic literature review, contributes to filling this gap. To this end,
from a pool of 127 relevant articles, a subset of 53 articles using real-world data was selected. The
paper analyzes and classifies empirical findings in transport network resilience studies. In particular,
it highlights and thoroughly discusses spatial patterns of resilience and relevant influencing factors
that positively or negatively affect the resilience attributes of a transport network. Although it is
possible to place the empirical results within the theoretical framework proposed by the literature,
two main issues on target reference levels arise from the graphical representation of transport network
resilience as suggested by the theory. Based on these findings, research gaps are identified and future

directions for transport researchers are proposed.

Keywords: Transport network resilience; empirical data; spatial findings; influencing factors; review

1. Introduction

Transport networks are the pillars of the economy. A resilient and efficient transport network, intended as the set
of links, nodes and transport services (e.g. toll roads, public transport services, airline services), enables the
movement of goods and people and promotes trade and cohesion between regions and societies. However, these
networks, at both the infrastructure and service levels, are susceptible to risks from external disruptions. Climate
change-related phenomena, such as rising temperatures and the increased frequency and intensity of extreme
weather events (De' Donato & Michelozzi, 2014; Stott, 2016), pose challenges to the resilience of passenger and
freight transport networks. Additionally, maintenance work (Younes et al., 2019), protests (Van Exel & Rietveld,
2001; Van Exel & Rietveld, 2009; Adler & van Ommeren, 2016), and other external disruptions like the COVID-19
pandemic or political unrest can disrupt travel and logistic activities on transport networks (Bergantino et al.,

2021; Chen et al,, 2024; Vickerman, 2021; Zhang et al.,, 2021). Over the past few decades, numerous articles have
1



examined the resilience of transport networks concerning these events, proposing various metrics to analyze
network performance during disruptions and assess resilience. Concepts such as robustness, vulnerability, and
reliability have been defined to provide additional tools for understanding and calculating transport networks
resilience. Although a significant portion of the literature has used real-world data to support its findings, only a
few of the transport resilience reviews we found have discussed its use. Furthermore, little emphasis has been
placed on exploring potential spatial patterns of resilience, defined as the interaction between spatial dynamics or
characteristics (e.g. urban or rural area, or distance decay functions from a point of interest) and a specific
resilience outcome (i.e. increase or decrease in one or more resilience attributes). Similarly, limited attention has
been given to the identification of influencing factors that may increase or decrease the resilience of transport
networks. To address this gap, this paper aims to review relevant literature on empirical resilience outcomes. In
addition, we exploited the analysis of the transport resilience studies that used real-world data to test the

theoretical and graphical framework which is generally adopted by the literature.

The paper is organized as follows: Section 2 provides a brief overview of the concept of transport network
resilience; Section 3 describes the selection process and the collected sample of articles; Section 4 analyzes spatial
patterns and factors influencing resilience, organizing and discussing them; Section 5 discusses the results and
situates them within the adopted theoretical context; section 6 highlights gaps in contextualizing the empirical
results within the theory and proposes future research directions; finally, section 7 concludes the paper. This
contribution delves into the use of real-world data in resilience assessment and provides an in-depth discussion of
empirical findings on resilience. Specifically, it identifies, classifies, and discusses empirical factors of resilience
and tests the theoretical and graphical framework over the real-world applications. Inconsistencies between
transport networks resilience theory and practice are critically discussed and future strands of research are

proposed.

2. Short overview of the concepts of transport network resilience

Transport network resilience is defined as the ability of a transport network to absorb shocks, maintain
functionality, adapt to and resist the negative effects of disruptive events, and rapidly recover to a state of
equilibrium (BeSinovié¢, 2020; Gongalves and Ribeiro, 2020; Gu et al., 2020; Pan et al,, 2021; Wan et al,, 2018). It
has a temporal dimension, with static resilience referring to the ability to maintain functions immediately after a
shock and withstand the damages and disturbances caused by disruptive events. Dynamic resilience, on the other
hand, refers to the speed at which a network recovers to a desired state of equilibrium after a perturbation
(Mattsson and Jenelius, 2015). Various related concepts have been categorized and defined to create a resilience
theoretical framework (Wan et al., 2018) and several metrics have been produced in the literature in recent years

(see Zhou et al., 2019 for a review). Here is a summary of the main related concepts:
1. Robustness: The network's ability to maintain functions during a disruption.

2. Vulnerability: The risk of disruption and loss of functionality, representing a network's susceptibility to

perturbations and adverse consequences that lead to performance loss.

3. Redundancy: The ability of a network to offer alternative options or provide additional capacity to replace

capacity loss during a disruption.



4. Resourcefulness: The availability of supplies and resources and the ability to mobilize them to restore

functionality during a perturbation.
5. Rapidity: The speed at which functionality of a transport network is restored.

6. Reliability: The probability that a transport network will function successfully for an intended period of

time under operating conditions.

7. Mitigation strategies: Retrofitting or enhancing transport infrastructure, with a focus on vulnerable
components or nodes of a network, to improve the ability to absorb the adverse effects of disruption

events.

Resilience and related concepts are interrelated and interdependent. As noted in the 4R framework (Bruneau et
al,, 2003), which is a widely adopted theoretical framework in resilience studies, robustness and redundancy
contribute to static resilience, while resourcefulness and rapidity contribute to dynamic resilience. Vulnerability,
reliability and mitigation strategies are associated with the risk of disruption and the networks’ ability to maintain
functionality under perturbations. Besides mitigation strategies, that are centered around the infrastructure, all
the other concepts are related both the service and the infrastructural resilience. For example, a bridge can be
robust to withstand earthquakes, and similarly, a transit service can be robust against strikes when guaranteed

operating hours are put in place. Figure 1 displays the interconnections between the various concepts.

Transport Network Resilience

Static resilience Dynamic resilience

. . o i Service/Infrastructure
Maintain provision of lktiorglis Recover of the
service —> infrastructure
A A A A
Robustness | | Redundancy | I Resourcefulness | I Redundancy

Reliability/
Vulnerability

Mitigation

Figure 1: Transport network resilience and related concepts

Regarding the measurement of resilience, it can be based on performance or topological metrics (see the reviews
of Pan et al, 2021, Reggiani et al.,, 2015 and Zhou et al,, 2019). Performance metrics measure the performance of a
network over time. Figure 2 shows the cumulative impact area, which in its initial form was conceptualized as the
“resilience triangle” (Tierney and Bruneau, 2007), defining resilience in different phases: pre-disruption (¢t0 to t1),

disruption/failure (static resilience) (t1 to t2), and recovery phase (dynamic resilience) (t2 to t3). This form has



been later expanded to a wider variety of resilience curve characteristics and corresponding cumulative areas. For
example, one frequently mentioned and used cumulative area is the "resilience trapezoid” (Poulin and Kane, 2021).

Quantitatively, according to Bruneau et al.'s (2003) framework, transport system resilience can be measured as:

R = [*[100 — Q(0)]dt, (1)

where R represents the "resilience triangle" from ¢; to t; and Q(t) represent a performance indicator, that, based

on the applications, may be the level of service, the physical resistance of the infrastructure or others.
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Figure 2: Evolution of transport networks’ performance under disruption based on Bruneau et al. (2003) and Gu
etal. (2020).

3. Methodology of the review and overview of the real-data sample

We conducted a literature search on the Scopus database using the following research string: "TITLE-ABS-KEY
("transport* resilien*" OR "resilien* of transport*" OR "transport* network resilien*" OR "resilien* of transport*
network")". Additional papers were included based on the references cited in the retrieved papers and searches
on authors who frequently focus on these topics. Only papers written in English were considered. From this

process, 127 papers were deemed relevant for interpreting transport network resilience, computing resilience

metrics, or both.

Among these papers, we conducted an additional literature search to identify the "real data subsample”, which
includes articles that used real data for their empirical analysis. In this paper, we focus only on performance metrics
since they align better with our research focus, which is network performance and related indicators (such as flow,
capacity, speed, and delay). For studies related to topological metrics, please refer to Zhou et al. (2019) or Pan et
al. (2021) for a review. To create the subsample, we retained the literature that used data (flow/speed/...) as
performance indicators in the resilience analysis (n=48) and the literature using a combination of performance
and topological metrics (likewise weighted network connectivity indexes) (n=13). Among these, we excluded

papers that used simulation data (n=8) and kept those that used real data (n=53). Figure 3 summarizes the process.
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Figure 3: Selection process of the 53 real data paper subsample

As shown in Figure 3, 36 of the subsampled papers analyze real disruption events, while the remaining 17 are used
to study simulated disruptions or serve as input or benchmarks for simulation models. For example, Donovan and
Work (2017) utilized real GPS data from taxi trips in New York City before, during, and after Hurricane Sandy to
study speed deviations in normal and disruptive states. On the other hand, Azolin et al. (2020) used real origin-
destination survey data on walking, cycling, public transportation, and car trips in two Brazilian regions to study
the share of trips that would be resilient to a hypothetical fuel crisis affecting most of the motorized means of
transport. The most used type of real data is flow data (n=38), followed by travel time (n=30), trip spatial
coordinates (n=7), cost of transport (n=5), and accident data (n=2). In terms of modes of transport, most studies
in the subset are related to the road network (n=17), followed by railways (n=11), metro services (n=10), bicycles
(n=10), airways (n=6), bus services (n=5), multimodal networks (n=5), walking (n=2), and waterways (n=1). Table

1 categorizes the literature subsample by data type and mode of transport.

Table 1: List of references by type of real-data use by mode of transport

Means of transport Traffic | Travel Spatial . Travel
: ; Accidents References

analyzed Flow time coordinates cost!
PRIVATE MEANS ON Chang and Nojima, 2001; Cox
et al, 2011; Tsapakis et al,
I 2012; Zhu et al, 2016;
(CAR: TAXI) Donovan and Work, 2017;
X Ganin et al, 2017; Zhu et al,,

2017; Fernandes et al., 2019;
Ganin et al. 2019;
Spyropoulou, 2020; Tang et
al., 2020; Otuoze et al., 2021

Tsapakis et al, 2012; Zhu et
al.,, 2016; Donovan and Work,
X 2017; Zhu et al, 2017;
Spyropoulou, 2020; Wang et
al., 2020; Niu et al., 2022;

Hara and Kuwahara, 2015;
X Zhu et al,, 2016; Donovan and

Work, 2017; Zhu et al., 2017;
Niu et al.,, 2022

X Matisziw et al., 2020

X Fernandes et al., 2019

RAILWAYS Chang and Nojima, 2001; Cox
X et al, 2011; Dawson et al,
2016; Fernandes et al,, 2019;

! Travel cost refers to the amount of families’ expenditures allocated to transportation (Fernandes et al., 2019), rail operator
loss of profits (Jani¢, 2018) and cost of users passenger in terms of value of time (Jani¢, 2018; Safitri and Chikaraishi; 2022)

5



Means of transport Traffic = Travel Spatial Travel

. . Accidents References
analyzed Flow time coordinates cost!

Woodburn 2019; Fabella and
Szymczak, 2021

Ferranti et al., 2016; Brazil et
al, 2017; Jani¢ 2018; Chen
and Wang, 2019; Biichel et al,,
2020

Ferranti et al,, 2016

Jani¢ 2018; Fernandes et al,,
2019

METRO

Cox et al,, 2011; D'Lima and
Medda, 2015; Sun et al., 2016;
Zhu et al, 2016; Loo and
Leung, 2017; Zhu et al., 2017;
Jiang et al, 2018; Lu, 2018;
Fernandes et al, 2019; Gao
and Wang, 2021

D'Lima and Medda, 2015; Sun
et al,, 2016; Zhu et al, 2016;
Zhu et al, 2017; Jiang et al,
2018; Lu, 2018

Fernandes et al., 2019

BICYCLE

Cox et al,, 2011; Fuller et al,,
2012; Saberi et al.,, 2018; da
Mata Martins et al, 2019;
Fernandes et al, 2019;
Younes et al.,, 2019; Azolin et
al,, 2020; Teixeira and Lopes
2020; Chengetal., 2021; Yang
etal, 2022

Fuller etal,, 2012; Chengetal,
2021; Saberi et al, 2018;
Younes et al.,, 2019; Teixeira
and Lopes 2020; Yang et al,
2022

BUS SERVICES

Cox et al, 2011; Loo and
Leung, 2017; Fernandes et al,,
2019; Mudigonda et al.,, 2019;
Mahdavi et al., 2020

Mudigonda et al., 2019

Mudigonda et al., 2019

Fernandes et al., 2019

MULTIMODAL
NETWORKS

Jin et al, 2014; Azolin et al,
2020; Sun etal,, 2020; Auad et
al., 2021; Safitri and
Chikaraishi 2022

Jinetal, 2014

Auad et al,, 2021; Safitri and
Chikaraishi 2022

AIRWAYS

de Jong and Lieshout, 2021;
Santos etal., 2021

Jani¢ 2015; Chen and Wang,
2019; Wang et al.,, 2019; Zhou
and Chen, 2020; de Jong and
Lieshout, 2021;

de Jong and Lieshout, 2021

WALKING

>

Loo and Leung, 2017; da Mata
Martins et al., 2019;

WATERWAYS

Baroud et al., 2014




4. Transport resilience empirical findings

In the following two sections, we analyze and categorize the spatial patterns and resilience influencing factors

found in the subsample2.
4.1 Spatial Patterns

The term "spatial patterns” refers to geographical aspects that are often associated with specific resilience effects.
We have identified the following spatial patterns: central/urban vs peripheral/rural; high vs low accessibility;
closest alternative mode distance decay; and different locations of hazards. Table 2 at the end of this section groups

the methodologies used to study these spatial patterns.

1) Central/urban vs peripheral/rural: The centrality of urban locations and the concentration of jobs and services
are linked to two opposing effects. On one side, central urban zones are found to be the most vulnerable to
disruptive events (Chang and Nojima, 2001; Ferranti et al., 2016; Hara and Kuwahara, 2015; Jiang et al., 2018;
Spyropoulou, 2020; Tsapakis et al., 2012). This vulnerability is due to the high density of passengers involved, the
high concentration of infrastructure that propagates the incident (Ferranti et al.,, 2016; Jiang et al., 2018), and the
presence of pre-existing bottlenecks or congestion (Hara and Kuwahara, 2015; Spyropoulou, 2020; Tsapakis et al.,
2012). Systematic congestion is particularly problematic during emergencies (Hara and Kuwahara, 2015), as pre-
existing bottlenecks exacerbate the negative effects of disaster-induced congestion, further impacting the
network's performance. On the other hand, central locations are found to be more resilient than outer regions
(Azolin et al., 2020; da Mata Martins et al., 2019; Fernandes et al, 2019; Lu, 2018; Matisziw et al.,, 2020;
Spyropoulou, 2020; Zhu et al., 2017). These regions exhibit higher redundancy (Azolin et al., 2020; da Mata Martins
et al, 2019; Fernandes et al,, 2019; Lu, 2018; Saberi et al.,, 2018; Spyropoulou, 2020; Yang et al., 2022), which
increases the availability of alternative modes of transport for disrupted modes' users. Additionally, the presence
of infrastructure, jobs, and services in central locations makes them priority zones (Zhu et al., 2017) with faster
recovery times compared to outer areas (Lu, 2018; Zhu et al,, 2017). This positive pattern is also observed in
multimodal networks, as shown by Safitri and Chikaraishi (2022), who found that central zones along main
transport corridors recovered faster and experienced lower monetary losses (in terms of travel time) during heavy
rain disruptions in Japan in 2018. Better infrastructure is also associated with improved emergency response.
Matisziw et al. (2020) noted that central areas with better infrastructure exhibit higher levels of resilience to car

crashes, measured as lower patrol response times, compared to rural areas.

2) High vs low accessibility: Different locations with varying levels of accessibility experience different magnitudes
of disruption-related effects. In general, areas with limited accessibility are less vulnerable to disruptions
compared to zones characterized by higher gravity and heavier flows (Chang and Nojima, 2001; Ganin et al., 2017,
2019; Santos et al,, 2021). For example, mountainous areas in Japan during the 1995 Kobe earthquake showed a

lesser decrease in commuting levels compared to central areas, which were the main commuting destinations

2 we acknowledge that both spatial patterns and influencing factors identified are not fully exhaustive in respect to what has
been found in the entire transport resilience literature, but they represent a set of interesting results found in the pool of studies
we considered.



(Chang and Nojima, 2001). However, when disruptions are mode-specific, such as bus services (Spyropoulou,
2020) or motorized private means (Azolin et al.,, 2020; da Mata Martins et al., 2019; Fernandes et al., 2019), regions
with limited accessibility through alternative modes of transport are less redundant and therefore less resilient.
The same holds for areas with scarce accessibility and little infrastructural redundancy when disruptions sever

the main access links (Safitri and Chikaraishi, 2022).

3) Distance decay (proximity) to closest alternative mode: This spatial pattern is specific to bike-sharing program
studies (Cheng et al., 2021; Saberi et al., 2018; Teixeira and Lopes, 2020; Yang et al., 2022; Younes et al., 2019).
Bike-sharing stations located within a threshold radius from a public transport stop significantly increase the
redundancy of transport networks when disrupted. The detected thresholds are 1.2 km in Cheng et al. (2021) and
1 km in Saberi et al. (2018). Teixeira and Lopes (2020) and Younes et al. (2019) found significant changes in bike-
sharing ridership within a catchment area with a radius of 400 meters from metro stations. Yang et al. (2022)
integrated the work of Saberi et al. (2018) and supported the 1 km threshold but found it to be significant only for
weekdays in the city of London, suggesting bike sharing as an alternative mode of commuting when public

transport is disrupted.

4) Different locations of hazards: Studies on the impacts of Hurricane Sandy (Donovan and Work, 2017; Jani¢, 2015;
Mudigonda et al., 2019) and Hurricane Irene (Zhu et al,, 2016, 2017) show that the closer a region is to the coast,
the greater the impact on the performance of transport networks. Interestingly, the impact is not necessarily
negative. Donovan and Work (2017) found that despite severe flooding, taxi trips in lower Manhattan were
significantly faster during the first four days after Hurricane Sandy, suggesting that travel time benefited from local
changes in demand and alternative use of infrastructure until it was restored. Proximity to the seashore is also a
negative factor in the context of sea-level rise, as shown by Dawson et al. (2016). However, the effects of sea-level
rise can propagate to inner regions, causing a cascade effect of congestion and delays (Sun et al., 2020). The affected
regions are not necessarily the ones directly affected by the disruption. Biichel et al. (2020) found that the 2017
Rastatt disruption in Germany led to a significant increase in congestion and delays in Schaffhausen, Switzerland,
due to necessary rerouting along a different path. On the other hand, the Basel area, which lies along the same path
that passes through Rastatt, experienced a significant reduction in congestion and average delays during the

disruption period.
Table 2. Methodology used for the identification of spatial patterns of resilience

Methodology Spatial pattern Reference

Areal definition of matrices of Central/urban vs peripheral/rural | Fernandes etal, 2019
expenditure and transport prices

Areal OD trip assignment Central/urban vs peripheral/rural | daMataMartins etal, 2019; Azolin etal,,
2020;
Different location of the hazards Donovan and Work, 2017; Biichel et al,
2020; Sun etal., 2020
Areal /point accessibility Central /urban vs peripheral /rural | Changand Nojima, 2001; Jiang etal., 2018;
- Lu, 2018; Safitri and Chikaraishi, 2022

High vs low accessibility Chang and Nojima, 2001




Methodology

Gravity model and percolation
theory

Spatial pattern

High vs low accessibility

Reference

Ganin etal,, 2017, 2019

Optimisation algorithm for best
localization and response time

Central/urban vs peripheral /rural

Matisziw et al., 2020

Routes detections and spatial
network analysis

Central/urban vs peripheral /rural

Hara and Kuwahara, 2015

Different location of the hazards

Mudigonda et al,, 2019

Spatio-temporal analysis of
disruption effect

Central/urban vs peripheral /rural

Tsapakis et al,, 2012; Ferranti et al,, 2016

Distance decay (proximity) to
closest alternative mode

Saberi et al, 2018; Younes et al., 2019;
Teixeira and Lopes, 2020; Yang et al., 2022

Different location of the hazard

Biichel et al., 2020

Spatial characteristics as
explanatory variables or
conditions (e.g. observation
subsets) in econometric modelling

Central/urban vs peripheral /rural

Zhu et al., 2016; Zhu et al., 2017;
Spyropoulou, 2020

High vs low accessibility

Santos et al.,, 2021; Safitri and Chikaraishi
(2022)

Distance decay (proximity) to
closest alternative mode

Younes et al., 2019; Teixeira and Lopes,
2020; Chengetal, 2021

Different location of the hazards

Jani¢, 2015; Dawson et al., 2016

(extrapolation); De Jong and Lietshout,
2021

4.2 Resilience Influencing Factors

We have identified the following main factors that influence the resilience of transport networks: redundancy,
provision of real-time information, institutional plans and management, climate change and intensity of
disruptions, strengthening of infrastructure, congestion and socio-economic indicators. Table 3 at the end of this

section groups the methodologies used to identify these resilience influencing factors.

1) Redundancy: Redundancy is the most frequently detected factor that impacts resilience and is found in 25
papers. This is not surprising, considering that redundancy is one of the attributes used by Bruneau et al. (2003)

and other scholars to define and build the 4R methodological framework for resilience assessment.

Regarding between-modes redundancy, bus services have been shown to be a significant complement to disrupted
metro services (Jin et al,, 2014; Jiang et al.,, 2018). Cycling serves as a complementary mode to both bus and metro
services (Azolin et al., 2020; Cox et al., 2011; Campisi et al.,, 2020; da Mata Martins, 2019). The road transport
complements metro and bus services during disruptions, and vice versa (Cox et al.,, 2011; Ganin et al,, 2017; Loo
and Leung, 2017; Spyropoulou, 2020; Sun et al., 2020; Zhu et al,, 2017). High-speed rail in China has been shown
to provide redundancy for air traffic during severe airport delays (Zhou and Chen, 2020). Similarly, walking
complements road transport during severe disruptions (Loo and Leung, 2017). However, it is important to note
that between-modes redundancy may also have negative side effects, such as increased congestion on alternative
modes. For example, bike-sharing docks located close to metro stations improve general resilience to metro

disruptions but may suffer increased pressure along specific routes (Yang et al., 2022). Similarly, car trips increase
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during public transport strikes, despite increasing redundancy, leads to congestion and increased travel time
(Spyropoulou, 2020; Tsapakis et al., 2012). Therefore, walking and cycling policies, as well as car-sharing/pooling,
can increase resilience not only in terms of redundancy but also in terms of robustness by keeping congestion low.
However, it is important to consider the limited range of walking and biking. To model their redundancy potential,

itis recommended to adopt maximum potential distances (Azolin et al., 2020; da Mata Martins et al., 2019).

Regarding within-mode (infrastructural) redundancy3, both ground and underground infrastructural redundancy
are significant positive factors for private and public transport (Chang and Nojima, 2001; Ganin et al,, 2017; Lu,
2018; Mudigonda et al., 2019; Serulle et al,, 2011). However, re-routing potential may be offset by two main factors.
First, infrastructure integration may not always be feasible due to discrepancies, suggesting that standardization
of infrastructure helps increase resilience (Woodburn, 2019). Second, re-routing should be supported by real-time

information to minimize performance losses (Loo and Leung, 2017; Spyropoulou, 2020).

2) Provision of real-time information: As anticipated, literature in the subsample indicates that the provision of
real-time data during a disruption increases resilience (Loo and Leung, 2017). This suggests that quick responses
from governments and transport operators in sharing relevant information can enhance the overall level of
resilience. For example, during the 2014 Hong Kong protests of the "Occupy Central Movement," the government,
transport operators, and other stakeholders effectively shared real-time data, enabling citizens to make informed
decisions and reroute to alternative modes with known availability. Similar real-time monitoring technologies have
been suggested by Ferranti et al. (2016) for train networks and by Yang et al. (2022) for bike-sharing networks.
Ferranti etal. (2016) proposed low-cost implementation of real-time monitoring to identify heat-related incidents
in the train network and intervene promptly to mitigate delays. Yang et al. (2022) recommended dynamic
geographical fleet management to redistribute pressure among a larger number of stations and bicycles during

disruptions of alternative modes.

3) Institutional plans and management: Institutional actions, both pre-disruption and post-disruption, are often
recommended to significantly contribute to the resilience of transport networks. In the case of disasters such as
hurricanes or tsunamis, Donovan and Work (2017), Hara and Kuwahara (2015), and Mudigonda et al. (2019)
suggest that identifying and reinforcing critical nodes and implementing quick post-emergency responses can
contribute to resilience and expedite recovery to pre-disruption levels. For example, traffic management and
evacuation planning could have led to better results during the 2011 Japan tsunami by redirecting traffic to more

elevated areas (Hara and Kuwahara, 2015).

Other types of recommended government actions are found in the subset. Ferranti et al. (2016) found that heat-
related disruptions are concentrated in the first period of the summer season, suggesting the implementation of
mid-term mitigation actions to prevent similar events in the following periods. Similarly to Yang et al. (2022)
regarding geographical fleet management, Matisziw et al. (2020) found that the geographical location of patrols
responding to car crashes is a significant positive factor, and that flexible patrol locations, combined with data-

driven accident anticipation, can enhance road network resilience.

3 A network is considered to have high infrastructural redundancy when there are numerous available paths that can be
chosen to reach a destination.
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In the air sector, de Jong and Lieshout (2021) found that integration at the European level, specifically in air traffic
management or guaranteeing overflight services, can offset performance degradation caused by air control strikes.

Evidence of additional performance decrease is found in cases where services of overflight are not guaranteed.

As expected, the provision of emergency aids during disruptions such as the COVID-19 pandemic is expected to
increase transport network resilience and partially mitigate its negative effects (e.g., the number of passengers for
airline operators, as seen in Santos et al., 2021). For multimodal networks, redesigning and rescaling passenger
shuttle services that feed into main train and bus routes during a pandemic has been shown to better accommodate

demand during disruptions (Auad et al., 2021).

4) Climate change and intensity of disruptions: As expected, the intensity of disruptions is a significant factor
contributing to a decrease in performance. Studies by Jani¢ (2015), Safitri and Chikaraishi (2022), Zhou and Chen
(2020) and Zhu et al. (2017) demonstrate that the stronger the intensity of the disruption, the greater the drop in
performance. These studies compare intensities by examining different networks subjected to the same weather
event (Jani¢, 2015; Safitri and Chikaraishi, 2022) or by considering different hazards affecting the same networks
at different times (Zhou and Chen, 2020; Zhu et al,, 2017). Dawson et al. (2016) used time-series analysis to find
that high-emission scenarios leading to accelerated climate change are estimated to significantly increase
accidents on the southwest English rail network, which is vulnerable to sea level rise due to its proximity to the

seashore.

5) Strengthening of the infrastructure: Strengthening the infrastructure is identified in the subset as a positive
factor for building resilience. It not only increases the physical resistance of the network but also enhances the
density of the infrastructure, providing more accommodating links for users in the event of a disruption (Lu, 2018;
Matisziw et al., 2020; Mudigonda et al., 2019; Serulle et al., 2011; Woodburn, 2019). Fabella and Szymczak (2021)
highlight that for rail networks strengthening of the infrastructure may be sufficient for dealing with small-scale
disruptions such as fallen trees, while larger events require quick and efficient rerouting plans (e.g., Fikar et al,,
2016). Mudigonda et al. (2019) emphasize that reinforcement actions should be anticipated through mitigation
plans that identify critical nodes and enhance local resilience. Similarly, Woodburn (2019) suggests identifying

infrastructure discrepancies and upgrading inferior infrastructure for integrated rerouting.

6) Congestion: As mentioned earlier, systematic congestion and high user flows have a negative impact on the
resilience of transport networks (Donovan and Work, 2017; Hara and Kuwahara, 2015; Jiang et al., 2018; Wang et
al,, 2019). Congestion can also spill over to alternative modes (Yang et al., 2022; Spyropoulou, 2020). Niu et al.
(2022) further supports the negative impact of pre-existing congestion and, in line with Hara and Kuwahara
(2015), points out that centrality topological features (representing infrastructure density) are relevant for
exacerbating congestion only in the case of unforeseeable events like hurricanes. In other types of foreseeable
events, such as the carnival of Rio de Janeiro, the authors did not find any association between centrality measures

and performance degradation.

7) Increase in socio-economic indicators: The last factor is related to the long-term increase in countries' socio-
economic indicators. Tang et al. (2020) and Otuoze et al. (2021) used historical macro-economic indicators to
evaluate and predict the resilience of transport networks in different cities in China and Nigeria, respectively. Tang
et al. (2020) employed various indicators, such as per capita area of paved roads, passenger traffic per road and
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the number of accidents, to build a layered network model and assess the extent to which these indexes contribute
to different aspects of resilience. They found that GDP growth alone is not sufficient to explain transport resilience
improvements, suggesting that economic growth does not necessarily correspond to an increase in transport
infrastructure and service quality. Economic growth can also bring negative side effects, including heavy
urbanization, increased user density and pressure on transport networks. Otuoze et al. (2021) noted that historical
data on population, population density, number and estimated length of roads and railways are good predictors of
traffic volume in congested cities like Kano and Lagos in Nigeria. Santos et al. (2021) supports the idea put forth
by Tang et al. (2020) and, by using data on air passengers during the first wave of the Covid-19 pandemic in Brazil's
federal states, indicate that historical improvement in social conditions is a significant factor in explaining the
decrease in airline ridership during the disruption. This evidence, coupled with the increasing substitutability of

long-haul trips with virtual meetings, is a factor that air operators should consider to be prepared for future risks.

Table 3. Methodology used for the identification of resilience influencing factors

Methodology

Influential factor

Reference

Areal/point accessibility Redundancy Jiang et al., 2018 (bus to metro), Lu, 2018
measurement (infrastructural redundancy);
Areal OD trip assignment Redundancy da Mata Martins, 2019 (bicycle to bus); Azolin

etal., 2020 (bicycle to bus); Sun et al,, 2020
(bus to road network)

Institutional plans and

Auad etal.,, 2021

Areal OD trip assignment and event
detection

management
Institutional plans and Donovan and Work, 2017
management
Congestion Donovan and Work, 2017

Bayesian Network Model

Increase in socio-economic
indicators

Tangetal,, 2020

Diff-in-Diff estimator-based prediction

Institutional plans and
management

De Jong and Lietshout, 2021

Friability and vulnerability analysis

Redundancy

Mudigonda et al.,, 2019 (infrastructural
redundancy)

Institutional plans and

Mudigonda et al,, 2019

management
Fuzzy inference Redundancy Serulle et al., 2011 (infrastructural
redundancy)
Gravity model and percolation theory | Redundancy Ganin etal,, 2017 (metro to car,
infrastructural redundancy)
In-depth interviews and surveys, case | Redundancy Woodburn, 2019 (infrastructural redundancy)

studies systematic analysis

Provision of real time
information

Loo and Leung, 2017

Influential factors as explanatory
variables or conditions (e.g.
observation subsets) in econometric
modelling

Redundancy

Zhu etal., 2017 (bus to car); Younes et al.,
2019 (bicycle to metro); Spyropoulou, 2020
(car to bus and metro); Teixeira and Lopes,
2020 (bicycle to metro); Zhou and Chen, 2020
(train to airlines); Cheng et al., 2021 (bicycle
to metro)

Institutional plans and
management

Santos et al., 2021

Climate change and intensity
of disruption

Jani¢, 2015; Dawson et al., 2016
(extrapolation); Zhu et al., 2017; Zhou and
Chen, 2020; Safitri and Chikaraishi, 2022
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Methodology Influential factor Reference

Congestion Niu et al.,, 2022
Increase in socio-economic Santos etal,, 2021
indicators
Optimization algorithm for best Institutional plans and Matisziw et al., 2020
localization and response time management
Predictions based on machine Increase in socio-economic Otuoze etal, 2021
learning approaches indicators
Routes detections and spatial network | Institutional plans and Hara and Kuwahara, 2015
analysis management
Congestion Hara and Kuwahara, 2015
Shortest path optimization Redundancy Jinetal, 2014 (bus to metro);
Spatio-temporal analysis of disruption | Redundancy Fuller et al,, 2012 (bicycle to metro); Saberi et
effect al.,, 2018 (bicycle to metro); Teixeira and
Lopes, 2020 (bicycle to metro); Yang et al.,
2022 (bicycle to metro); Younes etal., 2019
(bicycle to metro)
Stated preferences analysis Redundancy Campisi et al., 2020 (bicycle to bus)
Time series analysis Redundancy Coxetal, 2011 (bicycle to bus); Loo and
Leung, 2017 (bus and walking to car)

5. Discussion and Policy Implications

The analysis of the real-data subsample showed the existence of common spatial patterns that contribute to
resilience. Central and urban zones were found to be more vulnerable to disruptive events due to higher social,
economic, and infrastructure density. However, these areas also exhibited greater resilience by providing better
redundancy and being designated as "priority zones" with faster recovery times compared to outer areas. Similarly,
zones with lower accessibility were less vulnerable to disruptive events due to lighter user flows, but they were
also less resilient due to limited between-modes and infrastructural redundancy. Integration of bike sharing
programs with public transport (PT) modes within a certain distance from PT stops was found to significantly
enhance overall resilience. Furthermore, resilience did not always align with the local dimension of disruption.
While proximity to disruption generally leads to a drop in performance, countertrends such as increased

performance due to changes in demand or the propagation of disruptive effects to outer areas were also observed.

Regarding influential factors, the review identified several key factors correlated with higher levels of resilience:
(i) redundancy, (ii) provision of real-time information, (iii) institutional plans and management, and (iv)
strengthening of infrastructure. On the other hand, climate change, intensity of disruptions, and systematic
congestion were found to have negative impacts. There was no consensus in the subsampled literature regarding
the effect of economic indicators on resilience. While economic growth often leads to improved transport
infrastructure and services, it can also bring negative side effects such as increased urbanization and pressure on

transport networks. Further research is needed to study the specific effects of economic indicators.

The findings on spatial patterns and influential factors align with the 4R theoretical framework proposed by
Bruneau et al. (2003). Placing the analysis within this framework is expected, given its widespread use by scholars

in the field. Figure 4 categorizes the findings based on the 4R framework, with positive effects represented by a
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Figure 4: Sub-categorization of the findings based on the 4R framework

This graphical representation highlights the diverse contributions and impacts of different spatial patterns and
influencing factors on various attributes of resilience. It emphasizes the importance of considering multiple
attributes of resilience, as focusing on only one attribute may lead to incomplete and biased assessments that fail
to capture the offsets or synergies among different attributes. Given the existence of metrics that focus on single
attributes in the literature, this finding underscores the need for scholars and policymakers to acknowledge the
potential weaknesses and limitations of the metrics used thus far. The findings reported in this review support

several policy suggestions. Firstly, adopting metrics that focus on different attributes of resilience is recommended.
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Alternatively, when using a single-attribute approach is necessary, researchers should provide a clear rationale for
their choice or disclose the limitations associated with it. Furthermore, Figure 4 demonstrates that influential
factors can act specifically on certain resilience attributes, which may be of interest to policymakers. For example,
policymakers aiming to increase the likelihood of fast recovery for road users in the event of a disruption may
consider addressing systematic congestion and providing real-time information to users. The importance of the
local dimension of resilience should not be overlooked, suggesting that specific local policies should be preferred
over standardized resilience plans. However, local effects can also impact outer regions, necessitating the
integration of local policies and governance structures to achieve resilience on a larger geographic scale. Regarding
the building of resilience, the review identified specific institutional actions that can help offset performance drops
caused by disruptions. These include local reinforcement of critical nodes, the development of quick post-
emergency traffic plans, the establishment of geographically flexible fleets and intervention units and the provision

of financial aids.

Additionally, the review highlighted other influential factors that can be leveraged by local policies to enhance

resilience:

e Redundancy, both between modes and within modes, increases resilience. Redundancy efforts should
consider integration among alternatives, potential negative spillovers such as induced congestion, and
distance decays. Strengthening the infrastructure contributes to physical redundancy, bridging

infrastructure gaps and enabling different alternatives to integrate and build more robust networks.

e Provision of real-time data has a positive effect on transport network resilience, improving the speed of

recovery and the efficiency of rerouting and user redistribution across alternative modes.

e Systematic congestion exacerbates the negative effects of unexpected disruptions. Negative impacts on
transport resilience should be included in the planning of policies aimed at mitigating congestion's

negative externalities.

e Worsening climate change is a significant negative factor for transport resilience. Defining future risk
scenarios, as suggested by Jaroszweski et al. (2014), can help better understand the current level of
transport resilience. The increasing intensity of disruptions negatively affects resilience, necessitating the
development of future policies that focus not only on mitigation but also on adaptation (Zhang and Witlox,

2019) to build transport resilience.

6. Research gaps and future research strands

Although it was possible to place the empirical results in the context of the 4R framework, real-time data only
partially supports the "resilience triangle" as shown in Figure 2. Several papers (Donovan and Work, 2017; Fabella
and Szymczak, 2021; Hara & Kuwahara, 2015; Janié, 2015; Janié, 2018; Loo and Leung, 2017; Mudigonda et al,,
2019; Niu et al., 2022; Zhu et al., 2016) attempted to graphically represent the performance of the network as a

function of time, but at least two main issues need to be highlighted.

The first issue relates to the challenge of finding an objective pre-disruption reference point (Q(t;) in Figure 2). In

empirical time series performance data, it is not trivial to find a constant previous trend. For scheduled operations
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like bus, train, and airline services, the reference point may be objectively set as the scheduled level of activity
during the analyzed time period (Jani¢, 2015; Janié, 2018). However, when analyzing road traffic flow data, speed
data (Donovan and Work, 2017; Hara & Kuwahara, 2015; Mudigonda et al.,, 2019; Niu et al., 2022; Zhu et al., 2016),
or other types of data where there is no scheduled level, the pre-disruption level is usually set as the last
observation before the disruptive event. Such a level may not necessarily be the 100% reference point as depicted
in Bruneau et al.'s (2003) representation. Examples such as weekly/monthly seasonality or peak versus off-peak
traffic make it difficult to define common trends. The pre-disruption levels depend on the circumstances of the
transport system at the moment of disruption, and the calculation of resilience (as in Equation 1) is conditional on

them.

The second issue relates to the recovery phase and the definition of "full recovery of service" (Q(t3) in Figure 2),
which seems challenging to determine when analyzing empirical data. Should it be the same as the pre-disruption
performance level depicted in Figure 2?7 Without a pre-set reference level, it may be difficult to determine ¢t5 in
Figure 2, i.e., the time at which the event is totally overcome. The pre-disruption level is conditional on the state of
the transport system at the moment before the shock and on its operational volatility, and not necessarily that state
has to be reached again or be considered as the target point. In a dynamic and ever-changing world, performance
metrics aiming to return to pre-disruption event performance may also seem to rely on an undesirable expectation.
We deem that investigating these methodological issues in future research is of utmost relevance to support the
widespread adoption of the methodological framework and graphical representation of transport network

resilience.

Additional research directions are proposed to further investigate transport network resilience and its existing

challenges within empirical settings:

1. How can disruptive events be categorized for empirical analysis? There are several types of disruptions, and
every type of disruption has his own impact on transport performance. Table 4 provides evidence of this
heterogeneity summarizing the disruption types found in empirical studies. A first effort to categorize
typologies has already been done by van Cranenburgh et al. (2012), where substantial changes impacting
mobility are grouped according to the graduality, or abruptiveness, of the change and their domain. Most of
the paper we analyzed belong to the “abrupt” class, except for climate change (Dawson et al.,, 2016; Ferranti et
al,, 2016; Sun et al,, 2020) and long-term growth (Otuoze et al,, 2021; Tang et al., 2020) works. Starting from a
similar framework, it may be useful to further categorize impacts on transport networks performance based
on specific sub-types of abrupt changes and study how different shock conditions impact transport systems
and their resilience attributes (e.g., speed of recovery). Previous works (Mattsson and Jenelius, 2015 Dawson
and Marsden, 2019; Pan et al., 2021) have provided indications on different types of disruptions, but no

categorization has been made that may help support disruption-specific empirical frameworks of assessment.

Table 4: List of references by type of disruption

Class of disruption Type of disruption n REE I
INTERNAL SHOCKS | Operational failure 3 | Sunetal, 2016; Lu, 2018; Mahdavi et al., 2020;

Chang and Nojima, 2001; Dawson et al., 2016; Hara and
EXTERNAL SHOCKS | Natural event 18 | Kuwahara, 2015; Janié, 2015; Ferranti et al,, 2016; Zhu et al,
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2016; Donovan and Work 2017; Zhu et al., 2017; Jani¢, 2018;
Mudigonda et al.,, 2019; Woodburn, 2019; Biichel et al., 2020;
Sun et al,, 2020; Wang et al., 2020; Zhou and Chen, 2020; Fabella
and Szymczak, 2021; Niu et al., 2022; Safitri and Chikaraishi,
2022

Fuller et al., 2012; Tsapakis et al., 2012; Saberi et al,, 2018; De

Strikes 6 Jong and Lieshout, 2021; Spyropoulou, 2020; Yang et al., 2022
. Campisi et al., 2020; Teixeira and Lopes, 2020; Auad et al,, 2021;
Pandemic 4
Santos etal., 2021

Maintenance work 2 | Younesetal, 2019; Cheng et al,, 2021

. Matisziw et al., 2020
Incidents 1 ansziweta
Protest 1 | Looand Leung, 2017

1

Terroristic attack Coxetal, 2011

How are different modes impacted by different types of disruptive events? One main limitation of this study is
the lack of isolation of mode-specific and methodology-specific results. Spatial patterns and influencing factors
are found transversally between different modes and methodologies used, mainly for simplification and clarity
purposes. Only two of the reviews found in the literature (BeSinovi¢, 2020; Sun and Wandelt, 2021) considered
mode-specific resilience attributes, and there is generally little discussion on mode-specific requirements in
methodology and differences in results. The same holds true for the mode class, and the different effects that
disruptions may have on individual or collective modes. Therefore, there is room for future research to further
study this aspect. Delving into the aspect of mode-specific, mode class-specific differences in the results and
methodologies used in empirical analysis would provide additional knowledge to better understand mode-

specific, mode class-specific — in combination with disruption-specific - resilience.

Is there a link between long-term increase in general well-being of societies (as measured by socio-economic
indicators) and growth in transport resilience? The empirical results found in this study are contrasting, and
further studies on this topic may help define a specific trend direction. Within our pool of studies, only few
delved into these interconnections. Compiling a review following such research focus is expected to provide
more insights into the influence that economic growth may have on transport resilience and vice versa. A
similar survey may be relevant also from a return-on-investment perspective. Spatial disparities occur not only
atthe level of transport resilience but also in terms of resilience planning investments. Examining the complex
relationships between economic growth, investments in resilience and the actual resilience levels (as assessed
by empirical resilience studies), while considering their spatial variations, may be of significant interest to

transport practitioners.

Multimodal networks have received limited investigation with real data and performance metrics (in our
sample, only 5 eligible papers are related to multimodal networks), with many studies relying on topological
metrics methodologies. The main barrier of multimodal networks’ real data resilience studies is that it
requires data integration from different modes’ networks (e.g. metro and bus ridership data), a barrier that
topological analysis do not encounter due to the static framework of their assessments (network links and
nodes). Smart cards and other types of modes data integration are becoming more and more common (see, for
example, tap data analysis by Auad et al,, 2022), giving researchers a great opportunity to set up multimodal
network frameworks of analysis. Given the increasing attention on multimodal networks' resilience, as already
noted by Zhou et al. (2019), we recommend further empirical investigation to better understand the effects of

disruptions and the redundancy dynamics within networks of networks.
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7. Concluding Remarks

Over the past few decades, the debate on transport network resilience has been extensive, with many literature
review papers shedding light on different interpretations and metrics developed to describe and assess this
concept numerically. However, there has been relatively less attention given by reviews to the use of real data for
resilience assessment and related empirical results. This paper aims to bridge this gap by providing an overview
of the main spatial patterns and influencing factors that have emerged from the empirical analysis of transport
network resilience. By analyzing non-simulated data applications, it was possible to test the transport resilience

theoretical framework and draw future strands of research based on identified issues and inconsistencies.

We have identified spatial patterns (central/urban vs peripheral/rural; high vs low accessibility; distance decay
(proximity) to closest alternative mode; different location of hazards) and influencing factors (redundancy; real-
time information provision; institutional planning and management; climate change and intensity of disruptions;
strengthening of infrastructure; congestion; increase in socio-economic indicators) that empirical research
suggests to have a significant effect on transport network resilience. The empirical results are consistent with the
4R framework proposed by Bruneau et al. (2003), which is often referenced in resilience studies. Both spatial
patterns and influencing factors contribute to or negatively affect one or more of the four resilience attributes
defined by the 4R framework. One key finding of this paper is that spatial patterns and influencing factors can have
contradictory effects on ultimate resilience, contributing to or negatively affecting two or more attributes.

Therefore, metrics that aggregate attributes should be preferred over single-attribute metrics.

While the empirical results align with the attribute-based categorization of resilience, they only partially support
the graphical pattern of resilience initially proposed by Bruneau et al. (2003). Two main methodological issues
arise when setting the pre-disruption reference performance (baseline) and post-disruption full recovery (target)
points. In empirical studies, it is challenging to define these points based on clear common trends of pre-event
performance. The starting and ending points of the disruptive event may not necessarily represent the 100%
reference point, as they are conditional on the system's state at the moment of disruption, making it difficult to
differentiate the effects of the disruption on performance from the operational volatility of performance itself. The
paper highlights strengths and criticalities in transport network resilience from empirical studies, offering insights
for practitioners and future directions for researcher. In particular, future studies should focus on developing a
comprehensive typology of different perturbation effects and on classifying mode- and mode class-specific
disruptions’ impacts on specific resilience attributes. Additionally, examining the link between economic growth
and transport resilience and integrating multiple modes (multimodal network) in empirical assessments will

contribute to our understanding and knowledge of the resilience of transport networks.
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